
Getting Started
with TestStand
Getting Started with TestStand

March 2001 Edition
Part Number 322017B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 514 694 8521,
Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838, China (ShenZhen) 0755 3904939,
Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,
Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 280 7625, Netherlands 0348 433466,
New Zealand 09 914 0488, Norway 32 27 73 00, Poland 0 22 528 94 06, Portugal 351 1 726 9011,
Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51,
Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

Copyright © 1998, 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, ni.com™, and TestStand™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation v Getting Started with TestStand

Contents

Chapter 1
Introduction to TestStand

Installing TestStand ...1-1
Minimum System Requirements ...1-1
Installing TestStand ...1-1
What the Setup Programs Install ...1-2

Learning TestStand ..1-3
TestStand System Overview..1-4
Major Software Components of TestStand..1-5

TestStand Sequence Editor..1-6
TestStand Run-Time Operator Interfaces..1-6
TestStand Test Executive Engine..1-7
Module Adapters ...1-7
Process Models..1-8

Chapter 2
Loading and Running Sequences

Starting TestStand..2-1
Introduction to the Sequence Editor ..2-2

Menu Bar...2-2
Toolbar ..2-3

Development Workspace...2-3
Status Bar...2-3

Loading a Sequence File..2-4
About Sequences ...2-7

Running a Sequence...2-7
Setting Up Tracing Options...2-7
Running a Sequence Directly ..2-9
Running a Sequence Using the Sequential Process Model2-11
Running a Sequence Using the Batch Process Model.....................................2-12

Chapter 3
Editing Steps in a Sequence

Setting Up the Example ...3-1
Adding a New Step ..3-1
Specifying the Test Module ...3-4
Changing Step Properties...3-5
Calling a Subsequence from a Sequence ...3-16

Contents

Getting Started with TestStand vi ni.com

Chapter 4
Debugging Sequences

Setting Up the Example... 4-1
Step Mode Execution .. 4-1

Chapter 5
Using Variables and Properties

Setting Up the Example... 5-1
Using TestStand Variables .. 5-1
Using the Context Tab... 5-8
Using the Watch Expression Pane... 5-11

Chapter 6
Creating and Debugging Tests

Debugging a LabVIEW VI Using the LabVIEW Standard Prototype Adapter 6-1
Setting Up the Example .. 6-2
Creating a Virtual Instrument Code Module... 6-2
Debugging a Virtual Instrument Code Module... 6-11

Debugging a LabVIEW DLL Function Using the DLL Flexible Prototype Adapter ... 6-12
Creating the Virtual Instrument Code... 6-13
Building a LabVIEW DLL Code Module... 6-16
Calling the LabVIEW DLL function .. 6-18
Debugging the DLL Function ... 6-23

Debugging a LabWindows/CVI DLL Using the C/CVI Standard
Prototype Adapter... 6-23

Setting Up the Example .. 6-24
Creating a C/CVI Code Module Test.. 6-24
Debugging a CVI Code Module ... 6-35

Debugging a LabWindows/CVI DLL Using the DLL Flexible Prototype Adapter 6-37
Setting Up the Example .. 6-37
Creating the LabWindows/CVI Code Module.. 6-37
Building a LabWindows/CVI DLL... 6-44
Debugging the DLL Function ... 6-48

Chapter 7
Using Run-Time Operator Interfaces

Loading Sequences.. 7-1
Running and Debugging Sequences.. 7-4
Running Multiple Executions.. 7-6

Contents

© National Instruments Corporation vii Getting Started with TestStand

Chapter 8
Using Callbacks

Setting Up the Example ...8-1
Overriding a Process Model Callback ...8-1

Chapter 9
Adding Users and Setting Privileges

Setting Up the Example ...9-1
Using the User Manager ..9-1

Chapter 10
Using ActiveX in Code Modules

Using ActiveX in LabVIEW Test Virtual Instruments ...10-2
Setting Up the Example...10-2
Creating the Sequence and Virtual Instrument Tests10-2
Running the Sequence ...10-12

Using ActiveX in LabWindows/CVI Code Modules ..10-14
Setting Up the Example...10-14
Creating the Sequence and Tests...10-14
Running the Sequence ...10-21

Chapter 11
Additional Development Features

Setting Up the Example ...11-1
Interactive Execution ...11-1

Running Selected Steps as a Separate Execution ..11-1
Running Selected Steps During an Execution...11-4

Calling Sequences Dynamically and Passing Parameters ...11-6
Adding a Step to Sequence..11-6
Running a Sequence ..11-10

Chapter 12
Customizing the Report

Setting Up the Example ...12-1
Configuring Test Report Options ..12-1
Using External Report Viewers ...12-6
Adding New Step Properties to a Report...12-7

Setting Up the Example...12-7
Creating a Step Type ...12-7

Contents

Getting Started with TestStand viii ni.com

Creating a Step Module Using the LabVIEW Standard Prototype Adapter... 12-10
Creating a Step Module Using the C/CVI Standard Prototype Adapter......... 12-13
Creating a Step Module Using the DLL Flexible Prototype Adapter............. 12-16

Adding to a Report Using Callbacks ... 12-21

Chapter 13
Converting LabVIEW and LabWindows/CVI Test Executive Sequences

Converting LabVIEW Test Executive Sequences... 13-1
Converting LabWindows/CVI Test Executive Sequences.. 13-2

Appendix A
Technical Support Resources

Glossary

Index

Figures
Figure 1-1. TestStand System Architecture... 1-5

Figure 2-1. Login Dialog Box ... 2-1
Figure 2-2. Sequence Editor Main Window .. 2-2
Figure 2-3. Sequence Editor Toolbar... 2-3
Figure 2-4. Sequence Editor Status Bar... 2-3
Figure 2-5. Open Dialog Box .. 2-4
Figure 2-6. Sample1.seq Sequence File Window.. 2-5
Figure 2-7. Sequence File View Ring.. 2-6
Figure 2-8. Execution Tab on the Station Options Dialog Box............................... 2-8
Figure 2-9. Sample1.seq Execution Window .. 2-9
Figure 2-10. Test Simulator Dialog Box ... 2-10
Figure 2-11. Report Generating Status Bar ... 2-11
Figure 2-12. Model Options Dialog Box... 2-13

Figure 3-1. Selecting the Module Adapter .. 3-2
Figure 3-2. Inserting a New Step ... 3-3
Figure 3-3. Specify Module Dialog Box ... 3-5
Figure 3-4. Step Properties Dialog Box... 3-6
Figure 3-5. Preconditions Dialog Box ... 3-7
Figure 3-6. Run Options Tab ... 3-8
Figure 3-7. Post Actions Tab ... 3-11

Contents

© National Instruments Corporation ix Getting Started with TestStand

Figure 3-8. Loop Options Tab..3-12
Figure 3-9. Synchronization Tab..3-14
Figure 3-10. Expressions Tab ..3-15
Figure 3-11. Edit Sequence Call Dialog Box...3-17

Figure 4-1. Configure Message Box Step Dialog Box ..4-3
Figure 4-2. Paused Execution of Sample3.seq...4-4
Figure 4-3. Single-Stepping Toolbar Buttons ..4-5
Figure 4-4. Steps View while Suspended in Subsequence4-6

Figure 5-1. Insert Local Context Menu Command ..5-2
Figure 5-2. Edit Statement Step Dialog Box..5-3
Figure 5-3. Expression Browser Dialog Box ...5-4
Figure 5-4. Preconditions for the Loop End Step ..5-7
Figure 5-5. Context Tab ...5-9
Figure 5-6. Updated Watch Window Pane ..5-11

Figure 6-1. Adapter Configuration...6-2
Figure 6-2. LabVIEW Adapter Configuration ...6-3
Figure 6-3. LabVIEW Step Module Information...6-4
Figure 6-4. New Clock Frequency VI in LabVIEW ..6-5
Figure 6-5. Completed Clock Frequency.vi Front Panel ...6-7
Figure 6-6. Clock Frequency.vi Block Diagram..6-8
Figure 6-7. Edit Numeric Limits Test Dialog Box ..6-9
Figure 6-8. Numeric Format Dialog Box...6-10
Figure 6-9. LabVIEW Highlight Execution Mode ..6-11
Figure 6-10. Clock Frequency Function Front Panel...6-14
Figure 6-11. Clock Frequency Function Diagram ...6-15
Figure 6-12. VI Properties Dialog Box ..6-16
Figure 6-13. Define VI Prototype Dialog Box...6-17
Figure 6-14. Edit DLL Call Dialog Box ..6-19
Figure 6-15. Edit Numeric Limits Test Dialog Box ..6-21
Figure 6-16. Numeric Format Dialog Box...6-22
Figure 6-17. Adapter Configuration...6-24
Figure 6-18. C/CVI Standard Adapter Configuration..6-25
Figure 6-19. Edit CVI Module Call—Module Tab..6-26
Figure 6-20. Edit CVI Module Call—Source Code Tab..6-27
Figure 6-21. Generated Result from Create Code Command6-28
Figure 6-22. Edit Numeric Limits Test Dialog Box ..6-33
Figure 6-23. Numeric Format Dialog Box...6-34
Figure 6-24. Stepping into the GetFrequency Function...6-36
Figure 6-25. Edit DLL Dialog Box for a LabWindows/CVI Code Module6-38
Figure 6-26. Choose Code Template Dialog Box..6-41

Contents

Getting Started with TestStand x ni.com

Figure 6-27. Prototypes Conflict Dialog Box.. 6-42
Figure 6-28. Edit Numeric Limits Test Dialog Box .. 6-43
Figure 6-29. Numeric Format Dialog Box .. 6-44
Figure 6-30. Debugging the ClockFrequency function ... 6-49

Figure 7-1. LabWindows/CVI Operator Interface... 7-2
Figure 7-2. Open Sequence in Operator Interface ... 7-3
Figure 7-3. Paused Execution in Operator Interface ... 7-5

Figure 8-1. TestStand Sequential Model Callbacks .. 8-3
Figure 8-2. Test UUTs Sequence... 8-4
Figure 8-3. Adding Callbacks to a Sequence... 8-6

Figure 9-1. User Manager Window ... 9-3
Figure 9-2. New User Dialog Box... 9-4
Figure 9-3. Configure Privileges in New Profile... 9-5

Figure 10-1. Insert Locals Array of Numeric .. 10-3
Figure 10-2. Array Bounds Dialog Box .. 10-3
Figure 10-3. GenerateWaveform.vi Front Panel ... 10-5
Figure 10-4. TestStand Control Palette ... 10-6
Figure 10-5. GenerateTestStandWaveform.vi Control Panel.................................... 10-7
Figure 10-6. GenerateWaveform.vi Block Diagram ... 10-8
Figure 10-7. TestStand Function Palette ... 10-9
Figure 10-8. GenerateTestStandWaveform.vi Block Diagram 10-10
Figure 10-9. DisplayTestStandWaveform.vi Front Panel ... 10-11
Figure 10-10. DisplayTestStandWaveform.vi Block Diagram 10-12
Figure 10-11. Locals.Arraydata ... 10-13
Figure 10-12. Insert Locals Array of Numeric .. 10-15
Figure 10-13. Array Bounds Dialog Box .. 10-15
Figure 10-14. Generated GenerateTestStandWaveform Source.................................. 10-17
Figure 10-15. Locals.Arraydata Values... 10-22

Figure 11-1. Selecting Multiple Steps in a Sequence File Window 11-2
Figure 11-2. Breakpoint During Interactive Execution ... 11-3
Figure 11-3. Loop on Selected Steps During Execution ... 11-4
Figure 11-4. Dynamically Calling with an Expression ... 11-9
Figure 11-5. Dynamically Calling a Sequence .. 11-10
Figure 11-6. INTELProcessor.seq in the Call Stack Pane... 11-11
Figure 11-7. Sequence Parameters in the Context Tab.. 11-12

Figure 12-1. UUT Report Setting .. 12-2
Figure 12-2. Test Report in Text Format... 12-4

Contents

© National Instruments Corporation xi Getting Started with TestStand

Figure 12-3. Test Report in HTML Format ...12-5
Figure 12-4. Insert Numeric Array Context Menu...12-8
Figure 12-5. Numeric Array Properties Context Menu ...12-9
Figure 12-6. ReturnNumArray.vi Diagram..12-11
Figure 12-7. Numeric Array Report with Graph..12-12
Figure 12-8. Numeric Array Report with Graph..12-16
Figure 12-9. Numeric Array Report with Graph..12-20
Figure 12-10. Callbacks Dialog Box..12-21
Figure 12-11. ModifyReportHeader in Sequence View ..12-21
Figure 12-12. Insert String Local in ModifyReportHeader ...12-22
Figure 12-13. Completed ModifyReportHeader Sequence..12-23
Figure 12-14. New HTML Header...12-24

Tables
Table 1-1. TestStand Subdirectories ...1-2

Table 5-1. First-Level Properties of the Sequence Context....................................5-10

Table 6-1. Parameter Control Table of Values ...6-39

© National Instruments Corporation 1-1 Getting Started with TestStand

1
Introduction to TestStand

This chapter contains instructions for installing TestStand, and provides an
overview of the TestStand product.

TestStand is a flexible, powerful test executive framework for building,
customizing and deploying a full-featured test executive system.

Installing TestStand
Before starting on your test applications, you must install TestStand on
your computer. The TestStand setup program installs the software in
approximately five minutes.

Minimum System Requirements
To run TestStand for Windows, you must have the following:

• Windows NT 4.0 or later, or Windows 98/95

• Personal computer using at least a 266 MHz Pentium class or higher
microprocessor

• SVGA resolution (or higher) video adapter, minimally 800 × 600 video
resolution

• Minimum of 64 MB of memory

• 100 MB of free hard disk space (250 MB recommended)

• Microsoft-compatible mouse

Installing TestStand
Follow these instructions to install TestStand:

1. Verify that your computer and monitor are powered on and that you
have installed Windows NT 4.0 or later, or Windows 98/95.

2. Close all open Windows applications, and leave the operating system
in Windows.

3. Insert the installation CD into the CD-ROM Drive.

4. Choose the Run option from the Desktop Taskbar.

Chapter 1 Introduction to TestStand

Getting Started with TestStand 1-2 ni.com

5. Type x:\tssetup.exe (where x is the drive you are using) in the
command line box and click on OK.

6. Follow the instructions that appear in the dialog boxes.

National Instruments recommends you install the complete TestStand
program to take full advantage of all the TestStand capabilities. If you
choose to install with options, select the options you want and follow the
directions on the screen. If necessary, you can run the setup program again
later and install additional files.

Caution If you have LabVIEW VIs that you saved with a version of LabVIEW older than
5.1 that call the TestStand API, you must mass compile them in LabVIEW 5.1 or later
before installing TestStand 2.0. If you do not do mass compile your VIs, you will have
to manually replace every ActiveX diagram node that uses the TestStand API. The
TestStand 2.0 installer displays a message box if it detects an existing LabVIEW
installation.

What the Setup Programs Install
The setup program installs the TestStand development environment and a
number of additional files on your system. The full installation includes
example files that illustrate many of the features in TestStand and tutorial
programs that you use throughout this manual. The installer installs
TestStand and the associated files in subdirectories on your hard disk as
shown in Table 1-1.

Table 1-1. TestStand Subdirectories

Directory Name Contents

AdapterSupport Support files for the LabVIEW and C/CVI Standard Prototype Adapters

Api TestStand ActiveX Automation Server libraries for LabWindows/CVI
and MFC

Bin TestStand sequence editor executable, engine DLLs, and support files

Cfg Configuration files for TestStand engine and sequence editor options

CodeTemplates Source code templates for step types—This directory contains an NI

and a User subdirectory

Components Components that come with TestStand and components that you
develop—This directory includes callback files, converters, icons,
language files, process model files, step types, source files, and utility
files. It also contains an NI and a User subdirectory.

Chapter 1 Introduction to TestStand

© National Instruments Corporation 1-3 Getting Started with TestStand

Learning TestStand
The best way to familiarize yourself with TestStand is to do the following:

1. Thoroughly read the doc\readme.txt file distributed with
TestStand.

2. Read the remainder of this chapter for an overall idea of the concepts
and capabilities of TestStand.

3. Complete the tutorial sessions in Chapters 2–12 as outlined in this
manual.

4. Read Chapter 1, TestStand Architecture Overview, of the TestStand
User Manual, and familiarize yourself with the other chapters in that
manual.

Beginners should complete the tutorials in this manual. The TestStand User
Manual generally assumes familiarity with Getting Started with TestStand.
However, it is still useful to make quick references to other manuals and the
online help as questions arise while you learn and use TestStand.

In Chapter 2, Loading and Running Sequences, you learn about the
windows, menus, commands, and dialog boxes in TestStand. The TestStand
User Manual contains a chapter devoted to each of the windows and
components in TestStand. Scan these chapters for answers to any questions
you might have as you use Getting Started with TestStand. The table of
contents and index of each manual lists the location of helpful information
in that manual.

Doc Documentation files

Examples Example sequences and tests

OperatorInterfaces LabVIEW, LabWindows/CVI, Microsoft Visual Basic, and Delphi
operator interfaces with source code. This directory contains an NI and
a User subdirectory.

Setup TestStand Installer/Uninstaller

Tutorial Sequences and code modules that you use in the tutorial sessions in this
manual

Table 1-1. TestStand Subdirectories (Continued)

Directory Name Contents

Chapter 1 Introduction to TestStand

Getting Started with TestStand 1-4 ni.com

The tutorial begins with a general introduction to the TestStand sequence
editor and continues with sections devoted to building sequences in
TestStand. Because each step of the tutorial builds on previous elements,
you should follow the outline as given and not skip ahead.

TestStand System Overview
TestStand is a flexible, powerful test executive framework that has the
following major features:

• Out-of-the-box configuration and components that give you a
full-featured test executive that is ready to run.

• Numerous ways for you to modify the out-of-the-box configuration
and components or to add new components. These extensibility
mechanisms enable you to create the test executive that meets your
particular requirements without modifying the TestStand test
execution engine. You can upgrade to newer versions of TestStand
without losing your customizations.

• Sophisticated sequencing, execution, and debugging capabilities and a
powerful sequence editor that is separate from the run-time execution
operator interfaces.

• Four separate run-time execution operator interfaces with source code
for LabVIEW, LabWindows/CVI, Microsoft Visual Basic, and Delphi.

• Independence from particular Application Development Environments
(ADEs). You can create test modules in a wide variety of ADEs and
call preexisting modules or executables. You can create your own
run-time execution operator interface in any language that can control
ActiveX Automation Servers.

• Conversion of sequence files from the LabVIEW Test Executive
Toolkit Version 5.0 or the LabWindows/CVI Test Executive Toolkit
Version 2.0 to TestStand.

• Comprehensive ActiveX Application Programming Interface (API) for
building multithreaded test executives and other sequencing
applications.

The remainder of this chapter discusses the major software components of
TestStand as a product.

Chapter 1 Introduction to TestStand

© National Instruments Corporation 1-5 Getting Started with TestStand

Major Software Components of TestStand
This section provides an overview of the major software components of
TestStand.

Figure 1-1 shows the high-level relationships between elements of the
TestStand system architecture.

Figure 1-1. TestStand System Architecture

As Figure 1-1 shows, the TestStand engine plays a pivotal role in the
TestStand architecture. The TestStand engine can run sequences.
Sequences contain steps that can call external code modules. By using
module adapters that have a standard adapter interface, the TestStand
engine can load and execute different types of code modules. TestStand

Chapter 1 Introduction to TestStand

Getting Started with TestStand 1-6 ni.com

sequences can call subsequences through the same adapter interface.
TestStand uses a special type of sequence called a process model to direct
the high-level sequence flow. The TestStand engine exports an ActiveX
Automation API that the TestStand sequence editor and run-time operator
interfaces use.

TestStand Sequence Editor
The TestStand sequence editor is an application program in which you
create, modify, and debug sequences. The sequence editor gives you easy
access to all of the powerful TestStand features, such as step types and
process models. The sequence editor has the debugging tools that you are
familiar with in application development environments such as LabVIEW,
LabWindows/CVI, and Microsoft Visual C/C++. These include
breakpoints, single-stepping, stepping into or over function calls, tracing,
a variable display, and a Watch window.

In the TestStand sequence editor, you can start multiple concurrent
executions. You can execute multiple instances of the same sequence,
and you can execute different sequences at the same time. Each execution
instance has its own Execution window. In trace mode, the Execution
window displays the steps in the currently executing sequence. When
execution is suspended, the Execution window displays the next step to
execute and provides single-stepping options.

TestStand Run-Time Operator Interfaces
Your TestStand software includes four run-time operator interfaces in both
source and executable form. Each run-time operator interface is a separate
application program. The operator interfaces differ primarily based on the
language and ADE in which each is developed. TestStand ships with
run-time operator interfaces developed in LabVIEW, LabWindows/CVI,
Visual Basic, and Delphi.

Although you can use the TestStand sequence editor at a production station,
the TestStand run-time operator interfaces are less complex and are fully
customizable. Like the sequence editor, the run-time operator interfaces
allow you start multiple concurrent executions, set breakpoints, and
single-step. Unlike the sequence editor, however, the run-time operator
interfaces do not allow you to modify sequences, and they do not display
sequence variables, sequence parameters, step properties, and so on.

Refer to Chapter 16, Run-Time Operator Interfaces, in the TestStand User
Manual for more information on how to customize a run-time operator
interface.

Chapter 1 Introduction to TestStand

© National Instruments Corporation 1-7 Getting Started with TestStand

TestStand Test Executive Engine
The TestStand Test Executive Engine is a set of DLLs that export an
ActiveX Automation API for creating, editing, executing, and debugging
sequences. The TestStand sequence editor and run-time operator interfaces
use the engine API. You can call the engine API from any programming
environment that supports access to ActiveX Automation servers. Thus,
you can call the engine API from test modules, including test modules you
write in LabVIEW and LabWindows/CVI.

The documentation for the engine API is available as online help. You can
access the online help through the Help menu of the sequence editor or
from the TestStand program group.

Module Adapters
Most steps in a TestStand sequence invoke code in another sequence or in
a code module. When invoking code in a code module, TestStand must
know the type of the code module, how to call the code module, and how
to pass parameters to the code module. The different types of code modules
include LabVIEW VIs, C functions in DLLs, HTBasic files, HTBasic
subroutines, and C functions in source, object, or library modules that you
create in LabWindows/CVI or other compilers. Also, TestStand must know
the list of parameters that the code module requires.

TestStand uses module adapters to obtain this knowledge. TestStand
currently provides the following module adapters for the following
purposes:

• DLL Flexible Prototype Adapter—Call C functions in a DLL with a
variety of parameter types.

• LabVIEW Standard Prototype Adapter—Call any LabVIEW VI
that has the TestStand standard G parameter list.

• C/CVI Standard Prototype Adapter—Call any C function that has
the TestStand standard C parameter list. The function can be in an
object file, library file, or DLL. The function can also be in a source
file that is in the project you are currently using in the
LabWindows/CVI development environment.

• Sequence Adapter—Call subsequences with parameters.

• ActiveX Automation Adapter—Call methods and access the
properties of a ActiveX object.

• HTBasic Adapter—Calls HTBasic subroutines with no parameters.
TestStand and HTBasic exchange data using the TestStand API.
TestStand supports HTBasic version 7.2 or later.

Chapter 1 Introduction to TestStand

Getting Started with TestStand 1-8 ni.com

The module adapters contain other important information besides the
calling convention and parameter lists. If the module adapter is specific to
an Application Development Environment (ADE), the adapter knows how
to bring up the ADE, how to create source code for a new code module in
the ADE, and how to display the source for an existing code module in the
ADE. The DLL Flexible Prototype Adapter can query a DLL type library
for the parameter list information and display the information to the
sequence developer.

Process Models
Testing a Unit Under Test (UUT) requires more than just executing a set of
tests. Usually, the test executive must perform a series of operations before
and after it executes the sequence that performs the tests. Common
operations include identifying the UUT, notifying the operator of pass/fail
status, generating a test report, and logging results. These operations define
the testing process. The set of such operations and their flow of execution
is called a process model.

Having a process model is essential so you can write different test
sequences without repeating standard testing operations in each sequence.
Because you can modify the process model you can vary the testing process
based on your production line, your production site, or the systems and
practices of your company.

TestStand provides a mechanism for defining a process model. A process
model is in the form of a sequence file. You can edit a process model just
as you edit your other sequences. TestStand ships with three fully
functional process models: the sequential model, the batch model, and the
parallel model. You can use the sequential model to run a test sequence on
one UUT at a time. The parallel and batch models allow you to run the same
test sequence on multiple UUTs at the same time.

A process model defines a set of entry points. Each entry point is a
sequence in the process model file. By defining multiple entry points in a
process model, you give the test station operator different ways to invoke a
main sequence.

For example, the default TestStand process model,
SequentialModel.seq, provides two entry points: Test UUTs and
Single Pass. The Test UUTs entry point initiates a loop that repeatedly
identifies and tests UUTs. The Single Pass entry point tests a single
UUT without identifying it. Both entry points provide the option to log
results and produce reports. The entry points are called execution entry
points. Execution entry points appear in the Execute menu of the sequence

Chapter 1 Introduction to TestStand

© National Instruments Corporation 1-9 Getting Started with TestStand

editor or operator interface when the active window is a sequence file
window and the sequence file contains a sequence called MainSequence.

Use the Batch process model to control a set of test sockets that test
multiple UUTs as a group. For example, you might have a set of circuit
boards attached to a common carrier. The Batch model ensures that you
start and finish testing all boards at the same time. The Batch model also
provides batch synchronization features. For example, you can specify that,
because a step applies to the batch as a whole, the step runs only once per
batch instead of once for each UUT. The Batch model also makes it easy to
specify that certain steps or groups of steps cannot run on more than one
UUT at a time or that certain steps must run on all UUTs at the same time.
Finally, the Batch model can generate batch reports that summarize the test
results for the UUTs in the batch.

Use the Parallel model to control multiple independent test sockets. The
Parallel model allows you to start and stop testing on any socket at any time.
For example, you might have five test sockets for testing radios. The
Parallel model allows you to load a new radio into an open socket while the
other sockets are busy testing other radios.

The default process model is SequentialModel.seq. To change the
process model, select Configure»Station Options and click on the Model
tab. You can select a different process model from the Station Model ring
or you can specify the model by clicking on the Browse button. You also
can use the Sequence File Properties dialog box to specify that a sequence
file always uses a particular process model. For more information about the
process models, refer to Chapter 1, TestStand Architecture Overview,
Chapter 3, Configuring and Customizing TestStand, and Chapter 14,
Process Models, in the TestStand User Manual.

Proceed to the next chapter to begin the TestStand tutorials.

© National Instruments Corporation 2-1 Getting Started with TestStand

2
Loading and Running
Sequences

In this chapter, you learn to load and run sequences in the TestStand
sequence editor, and you learn about the windows in the sequence editor.

Starting TestStand
To start TestStand, complete the following steps:

1. Launch TestStand by going to the Start system menu, and selecting
Programs»National Instruments»TestStand»Sequence Editor.
After the sequence editor displays a main window, the Login dialog
box appears, as shown in Figure 2-1.

Figure 2-1. Login Dialog Box

2. If the default User Name is not administrator as shown in
Figure 2-1, click the User Name control and select administrator
from the popup list.

Chapter 2 Loading and Running Sequences

Getting Started with TestStand 2-2 ni.com

3. The default password for the administrator user login is empty,
so click on the OK button without entering a password. Figure 2-2
shows the main window for the sequence editor.

Figure 2-2. Sequence Editor Main Window

Introduction to the Sequence Editor
The sequence editor window has four main parts: the menu bar, the toolbar,
the development workspace, and the status bar. A detailed discussion of
each of these parts is presented in Chapter 2, Sequence Editor Concepts,
in the TestStand User Manual.

Menu Bar
The menu bar contains the following menus: File, Edit, View, Execute,
Debug, Configure, Source Control, Tools, Windows, and Help. Browse
the menus in the sequence editor to familiarize yourself with their contents.
Chapter 4, Sequence Editor Menu Bar, in the TestStand User Manual
contains a detailed explanation of each menu item.

Toolbar

Status Bar

Menu Bar

Development
Window

Chapter 2 Loading and Running Sequences

© National Instruments Corporation 2-3 Getting Started with TestStand

Toolbar
The toolbar contains shortcuts to commonly used selections of the menu
bar. As shown in Figure 2-3, the toolbar contains three sections: standard,
debug, and environment.

Figure 2-3. Sequence Editor Toolbar

• Standard Section—Contains buttons for creating, loading, saving,
cutting, and pasting sequence files.

• Debug Section—Contains buttons for executing a sequence, stepping
into, stepping over, stepping out, pausing, and terminating execution.

• Environment Section—Contains the adapter selection ring, buttons
for opening other TestStand station windows, and a button to bring an
open workspace to the front.

Development Workspace
The development workspace is the main area of the sequence editor. In this
area the sequence editor displays its windows.

Status Bar
The status bar displays common information in the sequence editor. As
shown in Figure 2-4, the status bar contains three sections: selection help,
login display, and model display.

Figure 2-4. Sequence Editor Status Bar

Standard Debug Environment

Selection Help Login Display Model Display

Chapter 2 Loading and Running Sequences

Getting Started with TestStand 2-4 ni.com

• Selection Help—Displays information on the currently selected menu
item.

• Login Display—Displays the user name of the current user.

• Model Display—Shows the pathname of the process model file.

You can manipulate all windows in TestStand through TestStand menu
selections or through the standard means for manipulating windows on the
operating system. For example, you can close, maximize, minimize, and
position TestStand windows on the screen through any of the Windows
standard windowing methods.

Loading a Sequence File
To view the features of the TestStand sequence editor, you must first load
a sequence file into the TestStand sequence editor. To do this, follow these
instructions.

1. Select File»Open. When you make this selection, an Open dialog box
appears as shown in Figure 2-5.

Figure 2-5. Open Dialog Box

2. Navigate to the TestStand\Tutorial subdirectory.

3. Select the Sample1.seq sequence file from the Tutorial
subdirectory, and click on the Open button.

Chapter 2 Loading and Running Sequences

© National Instruments Corporation 2-5 Getting Started with TestStand

After you open the sequence file, a new sequence file window appears
in the sequence editor, as shown in Figure 2-6.

Figure 2-6. Sample1.seq Sequence File Window

Note If you are not the first person to use this tutorial on your computer, it might be
necessary to reinstall TestStand to get the unmodified versions of the tutorial files.

If other people will be using the Getting Started example files on your computer, be sure
to use the Save As option to save your files under different file names. When you must save
a file, this manual specifies the suggested name.

The Sample1.seq sequence file is a simulated test of your computer
in which you can choose various hardware components to “fail” the
test. The sequence runs tests that are functions in a dynamic link
library (.dll) written with LabWindows/CVI.

The sequence file appears as a separate window within the sequence
editor. This window is called a Sequence File window. You can load
multiple sequence files into the sequence editor, and the sequence
editor displays each in its own Sequence File window.

Chapter 2 Loading and Running Sequences

Getting Started with TestStand 2-6 ni.com

You use the View ring at the top right of the Sequence File window to
select the aspect of the file to display. You can use the View ring to
view an individual sequence, a list of all sequences in the file, the
global variables in the file, or the data and step types that you use in
the file.

Figure 2-7 shows the contents of the View ring for the Sample1.seq
sequence file.

Figure 2-7. Sequence File View Ring

4. Select MainSequence in the View ring if it is not already selected.

The view for an individual sequence has five tabs: Main, Setup, Cleanup,
Parameters, and Locals. You select a tab to choose which part of the
sequence to view.

The Main, Setup, and Cleanup tabs each show one of the step groups in the
sequence. You can view the contents of each tab by clicking on the tab.
Following are the purposes of the steps you insert in each step group:

• Main—Test your UUT.

• Setup—Initialize or configure your instruments, fixtures, and UUT.

• Cleanup—Power down or uninitialize your instruments, fixtures,
and UUT.

View the contents of each tab and return to the Main step group when you
finish.

Chapter 2 Loading and Running Sequences

© National Instruments Corporation 2-7 Getting Started with TestStand

About Sequences
A sequence consists of a series of steps. In TestStand, a step can do many
things, such as initializing an instrument, performing a complex test, or
making a decision that affects the flow of execution in a sequence. A step
can jump to another step, call a subsequence, call an external code module,
or change the value of a variable or property.

Sequences can have steps that call other sequences. A sequence can have
parameters so you can pass values to it and receive values from it. You
define the parameters for a sequence in the Parameters tab.

Sequences can have any number of local variables. You can use local
variables to hold values that steps use. You can also use local variables for
maintaining counts, for holding intermediate values, or for any other value
storage. You define the local variables for a sequence in the Locals tab.

Running a Sequence
When you run a sequence in the sequence editor, you are initiating an
execution. You will examine two methods of running a sequence: running
a sequence directly and running a sequence using a process model, which
is a special type of sequence for directing the high-level sequence flow.

Setting Up Tracing Options
Before you run a sequence, confirm that the sequence editor tracing options
are configured properly by completing the following steps.

1. Select Configure»Station Options, which displays the Station
Options dialog box.

Chapter 2 Loading and Running Sequences

Getting Started with TestStand 2-8 ni.com

2. Confirm that the options on the Execution Tab are set, as shown in
Figure 2-8. Update any settings that are different.

Figure 2-8. Execution Tab on the Station Options Dialog Box

3. Click on OK to close the dialog box.

Chapter 2 Loading and Running Sequences

© National Instruments Corporation 2-9 Getting Started with TestStand

Running a Sequence Directly
The easiest way to start a sequence execution is to run a sequence directly.

Follow these steps to run MainSequence in the Sample1.seq sequence
file window:

1. Select MainSequence in the View ring of the sequence file window if
it is not already selected.

2. Select Execute»Run MainSequence.

When you make this selection, the sequence editor opens a new
window. This window is called an Execution window. In an Execution
window, you can view steps as they execute, the values of variables and
properties, and the test report when the execution completes.

Figure 2-9 shows an example Execution window.

Figure 2-9. Sample1.seq Execution Window

Chapter 2 Loading and Running Sequences

Getting Started with TestStand 2-10 ni.com

After the execution starts, a Test Simulator dialog box appears in front
of the Execution window, as shown in Figure 2-10.

Figure 2-10. Test Simulator Dialog Box

One of the steps in the execution displays this dialog box. The dialog
box prompts you to enter which computer component, if any, you want
to “fail” during the execution.

3. Select the RAM test by clicking on its checkbox.

4. Click on the Done button. Observe the Execution window as it traces
through the steps that TestStand runs.

The sequence editor displays the progress of an execution by placing a
yellow pointer icon to the left of the currently executing step in the
Steps tab. The pointer icon is called the execution pointer. Notice that
the status column for the RAM test contains the value Failed. When
the execution completes, the status section of the window title changes
from [Running] to [Completed], and the Execution window dims.

5. After the execution completes, close the Execution window by
selecting File»Close, by selecting Windows»Close Completed
Execution Displays, or by clicking on the X icon on the window
title bar.

Chapter 2 Loading and Running Sequences

© National Instruments Corporation 2-11 Getting Started with TestStand

If you want to rerun the sequence, repeat steps 1 through 5 above. For
step 3, select any test other than the Video or CPU test to fail in the Test
Simulator dialog box. You will complete the Video and CPU tests in a
subsequent exercise.

Note If you are using a fast computer and you want to slow down the tracing feature of
TestStand, you can change the Speed slider control value on the Execution tab of the
Station Options dialog box.

Running a Sequence Using the Sequential Process Model
In addition to executing a sequence directly, you can execute a sequence
using a process model entry point. Chapter 1, Introduction to TestStand,
explains that an entry point is simply a sequence in a process model
sequence file. When you execute an entry point, it performs a series of
operations before and after calling the MainSequence of your sequence
file. Common operations of the process model are identifying the UUT,
notifying the operator of pass/fail status, generating a test report, and
logging results.

Follow these steps to run MainSequence in the Sample1.seq sequence
file using the Single Pass execution entry point of
SequentialModel.seq.

1. Set SequentialModel.seq as your default process model by
selecting Configure»Station Options. Click on the Model tab and
select the sequential model from the Station Model ring control.

2. Verify that Sample1.seq sequence file window is the active window.

3. Select Execute»Single Pass.

4. Once again, select any test other than the Video or CPU test to fail in
the Test Simulator dialog box. You will complete the Video and CPU
tests in a subsequent exercise.

5. Click on Done to close the prompt.

Notice that after TestStand executes the steps in the main sequence,
the Single Pass entry point generates a test report. While TestStand
generates the report, a status indicator bar appears at the bottom of the
Execution window, as shown in Figure 2-11.

Figure 2-11. Report Generating Status Bar

Chapter 2 Loading and Running Sequences

Getting Started with TestStand 2-12 ni.com

6. After TestStand generates the report, the Execution window displays
the report in the report tab. Examine the test report and notice that it
contains information on the results of each step TestStand executes.

You learn more about the test report feature in Chapter 12,
Customizing the Report, in this manual.

7. After the execution completes, close the Execution window by
selecting File»Close, by selecting Windows»Close Completed
Execution Displays, or by clicking on the X icon on the window
title bar.

8. Select Execute»Test UUTs.

Before executing the steps in the main sequence, the process model
sequence displays a UUT Information dialog box requesting a serial
number.

9. Enter any number and click on the OK button.

10. Select a test to fail in the Test Simulator dialog box.

11. Click on Done. Observe the Execution window as the sequence is
executing.

After completing the steps in the main sequence, the process model
displays a banner that indicates the result of the UUT.

12. Click on the OK button to close the UUT Result banner. The process
model now generates a report but instead of completing the execution
and displaying the report, the process model displays the UUT
Information dialog box again.

13. Repeat steps 9 through 12 for several different serial numbers.

14. Click on the Stop button to stop the loop and complete the execution.

After the execution completes, TestStand displays a test report for all
of the UUTs.

15. Examine the test report and verify that it has indeed recorded the
results for each UUT.

16. After the execution completes, close the Execution window by
selecting File»Close, by selecting Windows»Close Completed
Execution Displays, or by clicking on the X icon on the window
title bar.

Running a Sequence Using the Batch Process Model
The batch process model executes the same test sequence on multiple
UUTs at the same time. With the batch process model, you start and finish
testing all UUTs in a set at the same time. The batch model also provides

Chapter 2 Loading and Running Sequences

© National Instruments Corporation 2-13 Getting Started with TestStand

batch synchronization features. For example, you can specify that, because
a step applies to the batch as a while, the step runs only once per batch
instead of once for each UUT. The batch model allows you to specify that
certain steps or groups of steps cannot run on more than one UUT at a time
or that certain steps must run on all UUTs at the same time. The batch
model also can generate batch reports that summarize the test results for the
UUTs in the batch.

Follow these steps to run the BatchUUT.seq sequence file using the
Single Pass execution entry point of BatchModel.seq.

1. Open the sequence file <TestStand>\Tutorial\BatchUUT.seq.

Note You do not need to change your default process model for this exercise. The
sequence file is configured to always use the batch process model, regardless of the default
process model of the sequence editor. You use the Sequence File Properties dialog box to
specify that a sequence file always uses a particular process model.

2. Select Configure»Model Options.

3. Change the settings to match those shown in Figure 2-12 and then click
on the OK button.

The number of Test Sockets is the number of UUTs to test in the batch.
It is easier to interpret the executions if you start with a low number of
Test Sockets.

Figure 2-12. Model Options Dialog Box

Chapter 2 Loading and Running Sequences

Getting Started with TestStand 2-14 ni.com

4. Select Execute»Single Pass.

During the execution, TestStand displays execution windows for each
Test Socket that show the tracing for each execution. There are several
synchronization sections within this example. The first section
simulates temperature change in a chamber. The step that performs the
test is only executed once per batch instead of once per UUT. The
second section simulates sharing a common resource, a pulse
generator. Only one UUT at a time executes steps in this section. The
third section simulates a frequency sweep, which all UUTs execute in
parallel. Finally a message popup displays the time it takes to execute
the frequency sweeps. Only one UUT reports the time.

TestStand generates a report for the batch and for each UUT. The batch
report summarizes the results for all the UUTs in the batch. When the
report format is HTML, the batch report provides hyperlinks to each
UUT report. Click on the hyperlinks within the batch report to view
specific UUT results.

5. After the execution completes, close the Execution window by
selecting File»Close, by selecting Windows»Close Completed
Execution Displays, or by clicking on the X icon on the window
title bar.

6. Select Execute»Test UUTs.

Before executing the steps in the main sequence, the process model
sequence displays a UUT Information dialog box requesting a batch
serial number and UUT serial numbers for each Test Socket. Notice
that you can disable particular Test Sockets.

7. Enter any batch serial number and UUT serial numbers and then click
on the Go button.

8. Click on the View Batch Report button.

After completing the steps in the main sequence, the process model
displays a banner that indicates the result of the UUTs. This banner
allows you to view the batch report and the individual UUT reports.

Notice that you have the option to view the Entire File or Current Only.
The Entire File consists of all tested batches while the Current Only
consists of the most recent batch that was tested.

9. Select Current Only.

TestStand launches an external viewer to display the reports. By
default, the HTML report displays in Microsoft Internet Explorer and
the text reports display in Microsoft Notepad. You can configure your
system to use other applications as external viewers.

Chapter 2 Loading and Running Sequences

© National Instruments Corporation 2-15 Getting Started with TestStand

10. Close the external viewer and return to the result banner.

11. Click the Continue button.

12. Repeat steps 7 through 11 for several different batches.

13. Click on the Stop button to complete the execution.

After the execution completes, TestStand displays test reports for all
batches and UUTs in an internal viewer.

14. Examine the reports and notice that TestStand records results for each
batch and UUT.

15. After the execution completes, close the Execution window by
selecting File»Close, by selecting Windows»Close Completed
Execution Displays, or by clicking on the X icon on the window
title bar.

This concludes this tutorial session. In the next session, you learn how to
add steps to a sequence and edit step properties.

© National Instruments Corporation 3-1 Getting Started with TestStand

3
Editing Steps in a Sequence

In this chapter, you add a step to a sequence and then configure the
properties of the step. Also, you add a subsequence call to another
sequence.

Setting Up the Example
If you did not directly proceed from Chapter 2, Loading and Running
Sequences, follow these steps to set up the TestStand sequence editor so
you can complete this tutorial session.

1. Close all windows in the sequence editor.

2. Select File»Open, open the Sample1.seq file in the
Teststand\Tutorial directory.

3. Display the MainSequence sequence in the Sequence File window by
selecting MainSequence in the View ring.

Adding a New Step
TestStand contains a set of predefined types of steps. Step types define a
list of standard properties and behaviors for each step of that type. Step
types might call code modules using a module adapter or step types might
not use module adapters at all.

The predefined step types available in TestStand include:

• Action

• Numeric Limit Test

• Multiple Numeric Limit Test

• String Value Test

• Pass/Fail Test

• Label

• Goto

• Statement

• Property Loader

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-2 ni.com

• Message Popup

• Call Executable

• Call Sequence

• Synchronization (Lock, Semaphore, Rendezvous, Queue,
Notification, Wait, Thread Priority, Batch Synchronization)

• Database (Open Database, Open SQL Statement, Close Database,
Close SQL Statement, Data Operation)

• IVI (Power Supply, DMM, Scope, Fgen, Tools)

For a description of each of these step types, refer to Chapter 10, Built-In
Step Types, in the TestStand User Manual.

In this exercise, you add a step to the sequence and configure that step to
call a function in a DLL code module. Follow these steps to insert a
Pass/Fail Test into the sequence:

1. Before you can insert a step that calls a code module, you must
specify which module adapter the step uses. You can enter the
selected module adapter by clicking on the Adapter Selection ring
control on the toolbar as shown in Figure 3-1 or by using the
Configure»Adapters. The selected adapter applies only to step
types that can use any module adapter.

Figure 3-1. Selecting the Module Adapter

When you insert a step in a sequence, TestStand binds the step to the
adapter that is currently selected in the ring on the sequence editor
toolbar. If you choose <None> for the selected adapter and you insert
a step, the step you insert does not call a code module. The icon for the
adapter appears as the icon for the step.

Select C/CVI Standard Prototype Adapter in the Adapter Selection
Ring. The C/CVI Standard Prototype Adapter allows you to call any
C function that has the TestStand standard C parameter list. The
function can be in a dynamic linked library (.dll), source file (.c),
object file (.obj), or static library file (.lib).

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-3 Getting Started with TestStand

2. Right click on the RAM test in the Sequence File window and select
Insert Step»Tests»Pass/Fail Test from the menu that appears, as
shown in Figure 3-2. This menu is called a context menu.

Figure 3-2. Inserting a New Step

When you make this selection, the sequence editor inserts a new
Pass/Fail Test step after the RAM step.

Normally, you use a Pass/Fail Test step to call a code module that
makes its own pass/fail determination. After the code module executes,
the Pass/Fail Test step evaluates a Boolean expression to determine
whether the step passes or fails.

3. By default, the new test is named Pass/Fail Test. After you insert the
step, the name of the step is selected.

4. You can rename the new step by typing Video Test and pressing
<Enter>. If you ever want to rename a step name later, you can right
click on the step name and select the Rename command from
the context menu.

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-4 ni.com

Specifying the Test Module
After you add a new step to the sequence, you must specify the test module
that the step executes.

1. Right click on the new Video Test step and select the Specify Module
command from the context menu.

When you make this selection, the sequence editor displays a dialog
box in which you can specify the code module for the step, along with
any parameters to pass when invoking the code module. The actual title
of the dialog box varies depending on the module adapter associated
with the step.

After you complete the required information in the dialog box,
TestStand stores the information as properties of the step. For the
C/CVI Standard Prototype Adapter, the sequence editor displays the
Edit C/CVI Module Call dialog box, shown in Figure 3-3.

2. Select Dynamic Link Library (*.dll) in the Module Type ring
control. This selection specifies that the code module for the test calls
a function within a DLL.

3. Click on the Browse button to select the DLL the step calls.

4. Select the computer.dll file in the TestStand\Tutorial
subdirectory. When you select a DLL, TestStand attempts to read the
type library of the DLL and lists all the exported functions in the
Function Name ring control.

5. Select the VideoTest function in the Function Name ring control by
clicking on the arrow to the right of the control. You can click on the
scroll bar arrows to scroll down to the VideoTest function. This
function is a easy routine that returns a Boolean value to indicate
whether the test passes or fails. Figure 3-3 shows the completed dialog
box.

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-5 Getting Started with TestStand

Figure 3-3. Specify Module Dialog Box

6. Click on the OK button to close the Edit C/CVI Module Call dialog
box and return to the Sequence File window.

Changing Step Properties
Each step in a sequence contains properties. The type of a step determines
the set of properties that a step has. All steps have a common set of
properties that determine the following:

• When to load the step

• When to execute the step

• What information TestStand examines to determine whether a test
passes or fails

• Whether TestStand executes the step in a loop

• What conditional actions occur upon step completion

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-6 ni.com

In this exercise, you examine these common properties and how you can set
their values.

1. Right click on the Video Test and select the Properties command from
the context menu.

When you make this selection, TestStand displays the Step Properties
dialog box for the step, shown in Figure 3-4.

Figure 3-4. Step Properties Dialog Box

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-7 Getting Started with TestStand

2. Click on the Preconditions button on the dialog box, which displays
the Preconditions dialog box, shown in Figure 3-5.

Figure 3-5. Preconditions Dialog Box

A precondition specifies the conditions that must evaluate to be true for
TestStand to execute a step during the normal flow of execution in a
sequence. For example, you might want to run a step only if a previous
step passes.

3. For the Video Test, define a precondition so that the step executes only
if the Power On step passes, as follows:

a. Under the Insert Step Status section of the dialog box, click on the
Power On step in the list of step names for the Main step group.

b. Add a condition to the precondition list by clicking on the Insert
Step Pass button. The Preconditions for ‘Video Test’ text box now
contains the string PASS Power On, which indicates that the step
executes only if the Power On step passes.

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-8 ni.com

c. Click on the OK button to close the Preconditions dialog box and
return to the Step Properties dialog box.

4. Click on the Run Options tab to display its tab, shown in Figure 3-6.
This tab contains various settings that affect how TestStand runs
this step.

Figure 3-6. Run Options Tab

The Run Options tab on the Step Properties dialog box contains the
following controls:

• Load Option—Specifies one of the following load option
settings for the step.

– Preload when opening sequence file—Loads the step
module when TestStand loads into memory the sequence that
contains the step.

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-9 Getting Started with TestStand

– Preload when execution begins—Loads the step module
when any sequence in the sequence file that contains the step
begins executing. This value is the default setting.

– Load dynamically—Does not load the step module until the
step is ready to call it.

• Unload Option—Specifies one of the following Unload Option
settings for the step.

– Unload when precondition fails—Unloads the step module
when the precondition for the step evaluates to False.

– Unload after step executes—Unloads the step module after
the step finishes executing.

– Unload after sequence executes—Unloads the step module
after the sequence that contains it finishes executing.

– Unload when sequence file is closed—Unloads the step
module when TestStand unloads the sequence file that
contains the step from memory. This value is the default
setting.

Note If you enable the general sequence property Optimize Non-Reentrant Calls to This
Sequence, TestStand does not unload the code modules for the sequence until after the
execution ends, regardless of the unload options for the sequence file or the steps in the
sequence.

• Run Mode—Sets the following run-mode values for the step.

– Force Pass

– Force Fail

– Skip

– Normal

• Precondition Evaluation in Interactive Mode—Determines
whether TestStand evaluates the step precondition when you run
the step interactively. The ring control contains the following
options:

– Use Station Options

– Evaluate Precondition

– Do Not Evaluate Precondition

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-10 ni.com

• TestStand Window Activation—Determines whether the
TestStand application activates its window when the step
completes. The ring control contains the following options:

– No Activation

– Activate When Step Completes

– If Initially Active, Reactivate When Step Completes

• Record Results—Determines whether the contents of the
Result property for the step are added to the result list for the
sequence. Refer to the Result Collection section in Chapter 6,
Sequence Execution, in the TestStand User Manual for more
information on result collection.

• Breakpoint—Causes TestStand to break at this step before
executing it. You also can set the breakpoint state for a step by
selecting the Toggle Breakpoint item in the context menu or by
clicking to the left of the step icon in the sequence editor.

• Step Failure Causes Sequence Failure—TestStand maintains an
internal status value for each executing sequence. When TestStand
sets the status property of a step to Failed, and you have enabled
the Step Failure Causes Sequence Failure option for the step,
TestStand sets the internal sequence status value to Failed. If the
internal status of the sequence is Failed when the sequence
returns, TestStand sets the status of the calling step to Failed.
This affects steps that use the Sequence Call step type or the
Action step type when the adapter is the Sequence adapter. Steps
that use the Pass/Fail Test, Numeric Limit Test, and String Value
Test step types with the Sequence adapter overwrite the step
status.

• Ignore Run-time Errors—Prevents the step from reporting a
run-time error to the sequence. When a step causes a run-time
error, the step stops executing, and TestStand sets the status of the
step to Error. If you disable this option, TestStand also sets the
internal status of the sequence to Error, and execution branches
to the Cleanup step group for the sequence. If you enable this
option, TestStand does not set the internal status of the sequence
to Error. Instead, TestStand resets the Error.Occurred
property of the step to False and execution continues normally
with the next step. The value of the Result.Status property
remains set to Error for the step.

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-11 Getting Started with TestStand

5. Click on the Post Actions tab, shown in Figure 3-7. The Post Actions
tab specifies an action that occurs after the step executes.

Figure 3-7. Post Actions Tab

You can make the action conditional on the pass/fail status of the step
or on any custom condition expression. For example, you might want
to go to a particular step or call a callback sequence if the step fails.
By default the On Pass and On Fail actions are to go to the next step.

6. Set the On Fail post action to Terminate execution, which forces the
sequence execution to terminate if the step fails.

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-12 ni.com

7. Click on the Loop Options tab, shown in Figure 3-8.

Figure 3-8. Loop Options Tab

You can use the Loop Options tab to configure an individual step to run
repeatedly in a loop when it executes. Use the Loop Type ring control
to enter the type of looping for the step. Your choices include:

• None—TestStand does not loop on the step. This is the default
value.

• Fixed number of loops—TestStand loops on the step a specific
number of times and determines the final pass or fail status of the
step based on the percentage of loop iterations in which the step
status is Passed.

• Pass/Fail count—TestStand loops on the step until the step passes
or fails a specific number of times or until a maximum number of
loop iterations complete. TestStand determines the final status of

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-13 Getting Started with TestStand

the step based on whether the specific number of passes or failures
occur, or the number of loop iterations reaches the maximum.

• Custom—This value allows you to customize the looping
behavior for the step. You enter a Loop Initialization expression,
a Loop Increment expression, a Loop While expression, and a
final Loop Status expression.

8. Change the following control values in the Loop Options tab:

Loop Type Fixed number of loops

Number of Loops 10

Loop result is Fail if < 80 %

With these settings, TestStand executes the Video Test step ten times
and sets the overall status for the step to Failed if less than eight of
the ten iterations pass. Figure 3-8 shows the completed dialog box.

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-14 ni.com

9. Click on the Synchronization tab, shown in Figure 3-9.

Figure 3-9. Synchronization Tab

The Synchronization tab in the Step Properties dialog box specifies a
synchronization action that TestStand performs around the execution
of the step. You can specify that a lock protects the execution of the
step or that the step synchronizes with other steps in a batch execution.
For more information on synchronization step types, refer to the Batch
Synchronization section of Chapter 11, Synchronization Step Types, in
the TestStand User Manual.

• Use Lock to Allow Only One Thread to Execute the
Step—Specifies that the step acquires a lock before it executes
and releases the lock after it completes.

• Lock Name or Reference Expression—Specifies which lock the
step acquires and releases. Enter a string expression to specify the
name of an existing lock. You also can enter an expression that

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-15 Getting Started with TestStand

evaluates to an ActiveX reference to an existing lock object. Leave
the control empty to specify that TestStand uses a lock that is
unique to the step.

• Batch Synchronization—Specifies the batch synchronization
operation that the step enters before it executes and exits after it
completes.

10. Click on the Expressions tab, shown in Figure 3-10.

Figure 3-10. Expressions Tab

You can use the Expressions tab to enter expressions that TestStand
evaluates before and after TestStand calls the step. You learn about
expressions in TestStand in Chapter 5, Using Variables and
Properties, in this manual.

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-16 ni.com

11. Click on the OK button to close the Step Properties dialog box.

Notice that the Execution Flow column on the Sequence File window
shows that the Video Test contains Post Actions and Loop Options.

12. Select File»Save As and save the sequence in the
TestStand\Tutorial directory as Sample2.seq.

13. Run the sequence by selecting Execute»Single Pass. Notice that if you
select the Video Test to fail, the sequence immediately terminates after
calling the Video Test ten times in a loop.

After TestStand generates the report, notice that when the video step
executes, the result of each loop iteration is recorded in the report.

14. Close the Execution window by selecting File»Close or by clicking on
the X icon on the window title bar.

Calling a Subsequence from a Sequence
In TestStand, you can call another sequence using a Sequence Call step in
a calling sequence. You can locate your called sequence within the calling
sequence file or a separate sequence file. In this exercise, you add a
sequence call step to your current sequence.

1. Right click on the Power On step and select the Insert Step»
Sequence Call command in the context menu. When you make this
selection, the sequence editor inserts a Sequence Call step after the
Power On step.

2. Rename the step CPU Test.

3. Specify which sequence the step invokes, as follows:

a. Right click on the CPU Test step.

b. Select the Specify Module command from the context menu,
which displays the Edit Sequence Call dialog box.

c. Click on the Browse button to the right of the File Pathname
control.

Chapter 3 Editing Steps in a Sequence

© National Instruments Corporation 3-17 Getting Started with TestStand

d. Select the file SubSequence1.seq from the
TestStand\Tutorial directory. Figure 3-11 shows the
completed dialog box.

Figure 3-11. Edit Sequence Call Dialog Box

e. Click on the OK button to close the dialog box.

4. Select File»Save to save your changes to the sequence file.

5. Right click on the CPU Test step again and select the Open Sequence
command from the context menu. When you make this selection, the
sequence editor opens the SubSequence1.seq sequence file and
displays the MainSequence sequence.

As with all sequence files, you can execute any sequence in the
sequence file.

Chapter 3 Editing Steps in a Sequence

Getting Started with TestStand 3-18 ni.com

6. Select Execute»Run MainSequence. Examine the execution of this
sequence.

7. Close the Execution window.

8. Close the SubSequence1.seq Sequence File window.

9. Select Execute»Single Pass.

10. Select a test to fail.

11. Click on Done.

After the sequence executes, examine the test report and notice that
TestStand logs the results of the steps in the subsequence along with
the steps from the parent sequence.

12. Close the Execution window.

The sequence call step provides alternate methods of calling subsequences.
The Multithreading and Remote Execution section of the Edit Sequence
Call dialog box allows you to call a subsequence on a thread parallel to that
of the calling sequence. You can use the ring control to specify that the
sequence you call runs in a new thread within the current execution or in a
new execution. In addition, the ring control allows you to invoke a
subsequence in a TestStand engine that runs on a remote host as a server.
The Settings button displays a dialog box that is unique for each selection
in the ring control. Use this dialog box to further configure your sequence
call preferences. Refer to Chapter 13, Module Adapters, in the TestStand
User Manual for more information about calling sequences.

This concludes this tutorial session. In the next session, you learn how to
use the executing and debugging tools available in TestStand.

© National Instruments Corporation 4-1 Getting Started with TestStand

4
Debugging Sequences

In this chapter, you use the sequence debugging features of TestStand to
single-step through your sequence during an execution. You debug the
source code in a test in Chapter 6, Creating and Debugging Tests.

Setting Up the Example
If you did not directly proceed from Chapter 3, Editing Steps in a Sequence,
follow these steps to set up the TestStand sequence editor so you can
complete this tutorial session:

1. Close all windows in the sequence editor.

2. Select File»Open and open the file <TestStand>\Tutorial\
Sample2.seq, which you created in Chapter 3, Editing Steps in a
Sequence. You also can find this file in the <TestStand>\
Tutorial\Solution directory.

3. Display the MainSequence sequence in the Sequence File window by
selecting MainSequence in the View ring.

Step Mode Execution
To try step mode execution in TestStand, follow these instructions:

1. Select Execute»Break At First Step. You use this command to
suspend an execution on the first step that TestStand executes. When
enabled, this command has a checkmark beside it in the menu.

2. Click on the Cleanup tab in the sequence window.

Recall that TestStand executes the Cleanup step group after the Main
step group executes, regardless of whether the sequence completes
successfully or a run-time error occurs in the sequence. If a Setup or
Main step causes a run-time error to occur, the flow of execution stops
and jumps to the Cleanup step group.

Chapter 4 Debugging Sequences

Getting Started with TestStand 4-2 ni.com

3. Add a step that displays a message popup to the Cleanup step group to
verify this behavior, as follows:

a. Right click in the empty step list of the Cleanup tab and select
Insert Step»Message Popup from the context menu.

b. Rename the new step Cleanup Message.

c. Right click on the Cleanup Message step and select the Edit
Message Settings command from the context menu. When you
make this selection, the sequence editor displays the Configure
Message Box Step dialog box.

d. Enter the text "Cleanup Message" into the Title Expression
string control. Ensure that you enclose the string with double
quotation marks ("), which indicates to TestStand that the
expression is a literal string.

e. Enter the text "I am now in the Cleanup Step Group",
including the quotation marks, into the Message Expression string
control.

f. Select Button 1 from the Timeout Button control. This will
enable the Time to Wait control. The Timeout Button selection
ring specifies which message box button activates automatically
after a timeout period expires.

g. Enter the value of 10 into the Time to Wait control. When your
sequence is executed, your message popup step displays a
notification message that automatically dismisses itself if the user
does not make an entry within 10 seconds. This is useful if an
operator is not present to acknowledge a non-critical message that
displays during testing.

Figure 4-1 shows the Text and Buttons tab of the completed dialog
box.

Chapter 4 Debugging Sequences

© National Instruments Corporation 4-3 Getting Started with TestStand

Figure 4-1. Configure Message Box Step Dialog Box

The Options tab of the Configure Message Box Step dialog box
allows you to enable a response text box for operator input,
position the message popup using coordinates, and make the
message popup modal with respect to the application. A modal
dialog box is a dialog box that you must dismiss before you can
operate other application windows.

h. Click on the OK button to close the dialog box.

4. Save the sequence by selecting File»Save As. Save the sequence as
Sample3.seq in the TestStand\Tutorial directory.

5. Execute the sequence directly by selecting Execute»Run
MainSequence.

After the execution starts, the sequence editor immediately pauses the
execution on the first step of the sequence because you previously
enabled the Break On First Step option. Figure 4-2 shows the current
state of the sequence editor.

Chapter 4 Debugging Sequences

Getting Started with TestStand 4-4 ni.com

Figure 4-2. Paused Execution of Sample3.seq

Notice that the title of the Execution window contains the running state
of the execution, that is, [Pause]. When execution suspends, the Steps
tab in the Execution window displays the execution pointer next to the
step that will run when execution resumes. The next step that TestStand
will execute is the Display Dialog step in the Setup step group.

When execution is in the paused state, you can single-step through
the sequence using the Step Into, Step Over, and Step Out
commands in the Debug menu, or by using the toolbar buttons, as

Chapter 4 Debugging Sequences

© National Instruments Corporation 4-5 Getting Started with TestStand

shown in Figure 4-3. For a detailed discussion of the single-stepping
tools, refer to Chapter 6, Sequence Execution, in the TestStand User
Manual.

Figure 4-3. Single-Stepping Toolbar Buttons

6. Click on the Step Over toolbar button to execute the Display Dialog
step. This step displays the Test Simulator dialog box.

7. Select the RAM test to fail, and click on Done.

After you close the dialog box, the sequence editor suspends the
sequence execution at the end of the Setup step group on END.

8. Activate the Sample3.seq Sequence File window by clicking on it or
by selecting Window»Sample3.seq.

9. Right click on the CPU Test step in the Main step group tab, and select
the Toggle Breakpoint command in context menu. Notice that a red
stop sign icon appears to the left of the step name.

10. Return to the Execution window by clicking on it or by selecting the
window in the Window menu. Select Debug»Resume to continue the
execution. After you make this selection, the sequence editor suspends
the execution again on the CPU Test step.

11. Click on the Step Into toolbar button to step into the subsequence.

Chapter 4 Debugging Sequences

Getting Started with TestStand 4-6 ni.com

Figure 4-4 shows the Steps view for the Execution window after you
step into the subsequence.

Figure 4-4. Steps View while Suspended in Subsequence

Usually, when a step invokes a subsequence, the sequence that contains
the calling step waits for the subsequence to return. The subsequence
invocation is nested in the invocation of the calling sequence. The
chain of active sequences that are waiting for nested subsequences to
complete is called the call stack. The last item in the call stack is the
most nested sequence invocation.

The Call Stack pane in the lower left half of the Execution window
displays the call stack for the execution. A yellow pointer icon appears
to the left of the most nested sequence invocation. The call stack in
Figure 4-4 shows that the main sequence in Sample3.seq is calling
the main sequence in SubSequence1.seq.

When execution suspends, you can view a sequence invocation in the
call stack by clicking on its radio button.

12. Click on each radio button in the Call Stack pane to view the status of
each sequence invocation.

13. Return to the bottom of the most nested sequence invocation in the call
stack.

Chapter 4 Debugging Sequences

© National Instruments Corporation 4-7 Getting Started with TestStand

14. Click on the Step Over toolbar button twice to start stepping through
the subsequence.

15. Before you reach the end of the sequence, select the Step Out toolbar
button. TestStand resumes the execution through the end of the current
sequence and suspends the execution before the next step after the
sequence call or until it reaches a breakpoint, which ever comes first.

16. Continue single-stepping through the sequence using the Step Over
toolbar button until the execution completes. Notice that the last step
executed is the Cleanup Message step that you added to the Cleanup
step group.

17. Click on OK to close the cleanup message before you complete the
execution. The Execution window dims when the execution completes.
Do not close the Execution window.

18. Rerun the execution by selecting Execute»Restart. The Execution
window must be the active window to restart the sequence.

19. After the sequence editor suspends the execution on the first step,
select Debug»Terminate.

Notice that TestStand still displays the Cleanup Message dialog box
even though you terminated the sequence execution. An execution
proceeds immediately to the steps in the Cleanup step group when an
operator or a run-time error terminates the execution.

20. Click on OK to close the cleanup message.

21. Rerun the execution again by selecting Execute»Restart.

22. After the sequence editor suspends the execution on the first step,
select Debug»Abort. Notice that the execution of the sequence
immediately stops, and TestStand does not execute any steps in the
Cleanup step group.

23. Close the Execution window.

24. Save the sequence by selecting File»Save.

25. Close the Sample3.seq window.

This concludes this tutorial session. In the next session, you learn how to
create and use TestStand variables and properties.

© National Instruments Corporation 5-1 Getting Started with TestStand

5
Using Variables and Properties

This chapter teaches you how you can use variables and properties in
TestStand, and points out features of TestStand that help you monitor the
values of variables and properties.

In TestStand, you can define variables with various scopes to share data
between steps of a sequence or even between several sequences. You can
define variables that are local to a sequence, variables that are global to a
sequence file, and variables that are global to the test station. Use these
types of variables as follows:

• You can use local variables to store data relevant to the execution of
the sequence. Each step and step module can directly access sequence
local variables.

• You can use sequence file global variables to store data relevant to the
entire sequence file. Each sequence and step in the sequence file can
directly access these globals.

• You can access station global variables from any sequence, step or
code module. Unlike other variables, the values of station global
variables are saved from one TestStand session to the next. Normally,
you use station global variables to maintain statistics or to represent the
configuration of your test station.

Setting Up the Example
If you did not directly proceed from Chapter 4, Debugging Sequences,
close all windows in the sequence editor so you can complete this tutorial
session.

Using TestStand Variables
In this exercise, you learn how to create and use local variables. You can
apply the concepts that you learn to sequence file globals and station
globals.

1. Select File»Open and open the file <TestStand>\Tutorial\
Sample2.seq, which you created in Chapter 3, Editing Steps in a

Chapter 5 Using Variables and Properties

Getting Started with TestStand 5-2 ni.com

Sequence. You also can find this file in the <TestStand>\
Tutorial\Solution directory.

2. Display the MainSequence sequence in the sequence file window by
selecting MainSequence in the View ring.

3. Click on the Locals tab of the sequence window. When you make this
selection, the view displays all of the local variables currently defined
for MainSequence in the Sample2.seq sequence file. By default,
TestStand defines only one local variable, ResultList, when
creating a new sequence. TestStand uses this array variable to store the
results from the steps it executes in this sequence. This array of step
results is used in report generation.

4. Right click in the right pane and select Insert Local»Number from the
context menu, as shown in Figure 5-1. When you make this selection,
the sequence editor inserts a new numeric local variable.

Figure 5-1. Insert Local Context Menu Command

5. Rename the variable LoopIndex.

Note The name of a TestStand variable cannot begin with a number or contain any spaces.

Chapter 5 Using Variables and Properties

© National Instruments Corporation 5-3 Getting Started with TestStand

6. Add steps to the sequence to make it loop on a set of steps based on the
value of the LoopIndex local variable, as follows:

a. Click on the Main tab in the sequence file window to display the
steps in the Main step group.

b. Right click on the Power On test and select the Insert Step»
Statement command from the context menu.

c. Rename the new step Reset Loop Index.

You use Statement steps to execute expressions that TestStand
evaluates when it executes the step. For example, you can use a
Statement step to increment the value of a local variable in the
sequence file.

d. Right click on the Reset Loop Index step and select the Edit
Expression command from the context menu, which displays the
Edit Statement Step dialog box, shown in Figure 5-2.

Figure 5-2. Edit Statement Step Dialog Box

Chapter 5 Using Variables and Properties

Getting Started with TestStand 5-4 ni.com

e. Click on the Browse button to display the Expression Browser
dialog box, shown in Figure 5-3.

Figure 5-3. Expression Browser Dialog Box

You use the Expression Browser to interactively build an
expression and to create variables and parameters. The Expression
Browser contains two tabs, Variables/Properties and
Operators/Functions. You can select variables and properties
from the tree view on the Variables/Properties tab. The
Operators/Functions tab contains a list of all predefined operators
and functions.

Chapter 5 Using Variables and Properties

© National Instruments Corporation 5-5 Getting Started with TestStand

The expression browser has help text for the currently selected
operator or function. TestStand supports all applicable expression
operators and syntax that you use in C, C++, Java, and Visual
Basic.

You can create variables directly from the Expression Browser
using the context menu shown in Figure 5-3. Hold your mouse
pointer over properties shown in the Expression Browser to get tip
strips. The tip strip displays Right-click to insert new variable
for those properties under which you can create a variable.

f. Expand the Locals item by double clicking on the name or by
clicking on the plus icon in front of the item. When you expand a
tree view item, the dialog box displays all the items under the base
item. Each item in the tree view is a property or a variable of
TestStand.

g. Select the LoopIndex variable under the Locals property and
click on the Insert button. When you make this selection, the
expression browser enters Locals.LoopIndex into the
Expression control.

To refer to a subproperty, you use a period to separate the name of
the property from the name of the subproperty. For example, you
reference the LoopIndex subproperty in the Locals property as
Locals.LoopIndex.

h. Click on the Operators/Functions tab, and select the Assignment
category from the left pane.

i. Select the assignment operator (=) from the right pane.

j. Click on Insert to add the assignment operator to the expression.
You should now see Locals.LoopIndex = in the Expression
control.

k. Place the text cursor directly after the equals sign in the expression
control and then type the number zero so that the expression now
reads Locals.LoopIndex = 0.

l. Click on the OK button to return to the Edit Statement Step
dialog box.

m. Click on the Check Syntax button to verify that the expression
does not contain any illegal syntax.

n. Close the Edit Statement Step dialog box by clicking on the
OK button to return to the Sequence Editor window.

o. Right click on the Reset Loop Index step and select Insert Step»
Label from the context menu.

Chapter 5 Using Variables and Properties

Getting Started with TestStand 5-6 ni.com

p. Rename the new step Loop Begin. You normally use a Label step
as the target for a Goto step, as you will see later in this session.
By using a Label step, you can rearrange or delete other steps
around the Label step without having to change the target step that
the Goto step references.

7. Add a statement step to increment the value of the LoopIndex local
variable, as follows:

a. Right click on the RAM test and select Insert Step»Statement
from the context menu.

b. Rename the new step Increment Loop Index.

c. Right click on the Increment Loop Index step and select Edit
Expression from the context menu.

d. Click on the Browse button to display the expression browser.

e. Use the expression browser to build, or type directly in the
Expression control, the following expression:

Locals.LoopIndex ++

The increment operator (++) is under the Arithmetic group of the
Operators/Functions tab.

f. Click on OK twice to close the both the Expression Browser and
the Edit Statement dialog boxes.

8. To complete the loop structure, add a Goto step to the sequence, as
follows:

a. Right click on the Increment Loop Index step and select Insert
Step»Goto from the context menu.

b. Rename the step Loop End.

c. Right click on the Loop End step and select Edit Destination
from the context menu.

d. Select the Loop Begin step in the Destination control by clicking
on the arrow to the right of the control.

e. Click on OK to close the dialog box.

9. To complete the loop structure, set a precondition for the Loop End
step so that it executes only if the value of the LoopIndex variable is
below a certain value, as follows:

a. Right click on the Loop End step and select Properties from the
context menu.

b. Click on the Preconditions button to open the Preconditions
dialog box.

Chapter 5 Using Variables and Properties

© National Instruments Corporation 5-7 Getting Started with TestStand

c. Click on Insert New Expression.

d. Click on the Browse button in the Edit/View Expression section
of the dialog box to open the Expression Browser.

e. Using the Expression Browser, create the following expression:

Locals.LoopIndex < 5

The less than operator (<) is under the Comparison group on the
Operators/Functions tab.

f. Click on OK to close the Expression Browser dialog box.

Figure 5-4 shows the completed Preconditions dialog box.

Figure 5-4. Preconditions for the Loop End Step

10. Click on OK twice to close the both the Preconditions dialog box and
the Step Properties dialog box.

Chapter 5 Using Variables and Properties

Getting Started with TestStand 5-8 ni.com

11. Select File»Save As. Save the sequence as Sample4.seq in the
TestStand\Tutorial directory.

12. Click on the Execute menu to see if the Break At First Step option is
enabled.

13. If Break At First Step is enabled, disable it.

14. Run the Sequence by selecting Execute»Single Pass.

15. Click on Done in the Test Simulator dialog box.

16. After the sequence executes, examine the test report and notice that
TestStand executed the steps within the loop (CPU Test, ROM Test,
and RAM Test) five times.

17. Close the Execution window.

Using the Context Tab
In this exercise, you use the Watch Expression pane of the Execution
window to examine the value of the LoopIndex variable while TestStand
executes the sequence.

1. Right click on the Loop End goto step and select Toggle Breakpoint
from the context menu to set a breakpoint on the step. In the sequence
window, a red stop sign icon appears beside the Loop End step
indicating this breakpoint.

2. Run the sequence by selecting Execute»Single Pass.

3. Click on Done in the Test Simulator dialog box. The execution
suspends on the Loop End step.

4. Click on the Context tab of the Execution window.

5. Expand the Locals property in the left upper tree view pane.

Chapter 5 Using Variables and Properties

© National Instruments Corporation 5-9 Getting Started with TestStand

6. Click on the LoopIndex property under the Locals property and
notice that the value of the numeric is 1, as shown in Figure 5-5.

Figure 5-5. Context Tab

The Context tab displays the sequence context for the sequence
invocation that is currently selected in the Call Stack pane. The
sequence context contains all the variables and properties that the steps
in the selected sequence invocation can access. You use the Context tab
to examine and modify the values of these variables and properties.

Before executing the steps in a sequence, TestStand creates a run-time
copy of the sequence. This allows parallel executions of the same
sequence to run such that each execution does not alter variable or
property values in other executions. When an execution completes,
TestStand discards the run-time sequence copy.

TestStand maintains a sequence context for each active sequence. The
sequence context represents the execution state of the sequence. The
contents of the sequence context change depending on the currently
executing sequence and step. Both the run-time copy and the original
versions of properties and variables are accessible from a sequence
context.

You can use the sequence context to access variables and step
properties in expressions and through calls to the TestStand ActiveX
API from step modules. Refer to the Using the Watch Expression Pane
section in this chapter for information on expressions. For more

Chapter 5 Using Variables and Properties

Getting Started with TestStand 5-10 ni.com

information on the TestStand API, refer to the TestStand Programmer
Help.

Table 5-1 lists the first-level properties in the sequence context and
describes their contents. Refer to Chapter 8, Sequence Context and
Expressions, in the TestStand User Manual for more information on
sequence contexts.

7. Select Debug»Resume and notice that the execution resumes and
suspends at the Loop End goto step again.

8. Click on the Context tab again and notice that the LoopIndex value is
now 2. Leave the execution in the Pause state.

Table 5-1. First-Level Properties of the Sequence Context

Sequence Context
Subproperty Description

Step Contains the properties of the currently executing step in the current
sequence invocation. The Step property exists only while a step
executes. It does not exist when the execution is between steps, as at a
breakpoint.

Locals Contains the sequence local variables for the current sequence invocation.

Parameters Contains the sequence parameters for the current sequence invocation.

FileGlobals Contains the sequence file global variables for the current execution.

StationGlobals Contains the station global variables for the engine invocation. TestStand
maintains a single copy of the station globals in memory.

ThisContext Holds a reference to the current sequence context. You normally use this
property to pass the entire sequence context as an argument to a
subsequence or a step module.

RunState Contains properties that describe the state of execution in the sequence
invocation, such as the current step, the current sequence, and the calling
sequence.

Chapter 5 Using Variables and Properties

© National Instruments Corporation 5-11 Getting Started with TestStand

Using the Watch Expression Pane
In this exercise, you monitor the value of the variable LoopIndex in the
Watch Expression pane. The Watch Expression pane is located in the lower
right of the Execution window, as shown in Figure 5-6. The Watch
Expression pane displays the values of watch expressions you enter.
TestStand updates the values in the Watch Expression pane when execution
suspends at a breakpoint. If tracing is enabled, TestStand also updates the
values after executing each step.

Normally, you enter watch expressions to monitor the values of variables
and properties as you trace or single-step through a sequence. You can drag
individual variables or properties from the Context tab to the Watch
Expression pane.

To create a watch expression for the variable LoopIndex, complete the
following steps:

1. Click on the LoopIndex property in the tree view of the Context tab,
and while holding down the mouse button, drag the variable from the
tree view to the Watch Expression pane. Release the mouse button
when the cursor is over the Watch Expression pane.

Notice that the value of the watch expression already evaluates to 2,
as shown in Figure 5-6.

Figure 5-6. Updated Watch Window Pane

2. Now, select Debug»Resume and notice that when the execution
suspends on the Goto step again, the value of the watch expression
changes from 2 to 3.

3. Remove the breakpoint by clicking to the left of the Loop End step
icon.

4. Select Debug»Resume to complete the execution.

5. Close the Execution window.

6. Save the sequence by selecting the File»Save, which saves the changes
you made to the Sample4.seq sequence file.

Chapter 5 Using Variables and Properties

Getting Started with TestStand 5-12 ni.com

You can create more complex expressions in the Watch Expression pane.
To add a new expression, right-click in the Watch Expression pane and
select Add Watch from the context menu. To edit an existing watch
expression, right-click on the expression and select Edit Expression from
the context menu. Both of these selections display the Expression Browser
that you can use to create an expression.

Note You can copy watch expressions and paste them into the Watch Expression pane of
a subsequent execution. Watch expressions are automatically maintained in subsequent
executions if you select Execution»Restart after an execution has completed but before
you close the execution display window.

For more information about the Watch Expression pane, refer to Chapter 6,
Sequence Execution, in the TestStand User Manual. For more details on
using variables and properties in TestStand, refer to Chapter 5, Sequence
Files, Chapter 7, Station Global Variables, and Chapter 8, Sequence
Context and Expressions, in the TestStand User Manual. You can also refer
to the following TestStand Programmer Help topics for information about
using variables and properties in TestStand: Object Relationships,
Sequence Context, Property Paths, Using Property Paths, Finding a
Property Path, Viewing Step Properties, Commonly Used Properties.

This concludes this session of the tutorial. In the next session, you learn
how to create and debug tests in the LabVIEW and LabWindows/CVI
development environments.

© National Instruments Corporation 6-1 Getting Started with TestStand

6
Creating and Debugging Tests

In this chapter, you learn how to create and debug code modules that are
called using the LabVIEW Standard Prototype Adapter, the C/CVI
Standard Prototype Adapter, and the DLL Flexible Prototype Adapter. You
use LabVIEW and LabWindows/CVI to write and debug code modules.

If you do not use LabVIEW or LabWindows/CVI, you may want to skip
the exercises that use the LabVIEW Standard Prototype Adapter and the
C/CVI Standard Prototype Adapter. If your code modules are C-style
DLLs, the exercises using the DLL Flexible Prototype Adapter might be
useful, regardless of your application development environment.

You can create and debug code modules written in other application
development environments (ADEs). However, this is beyond the scope of
this manual. Refer to National Instruments Developers Zone (NIDZ) for
information about writing and debugging code using other ADEs.

Debugging a LabVIEW VI Using the LabVIEW Standard
Prototype Adapter

In this exercise, you learn how to create LabVIEW test modules that
you can use with TestStand, and how to debug them by stepping into
a virtual instrument (VI) from the TestStand sequence editor. This
session of the tutorial assumes a general familiarity with the LabVIEW
development environment. If you are not using LabVIEW, but you do use
LabWindows/CVI or you create C-style DLLs, you can skip this section
and proceed to the Debugging a LabWindows/CVI DLL Using the C/CVI
Standard Prototype Adapter section in this chapter.

Note Verify that you are using the appropriate version of LabVIEW with TestStand.
Refer to the readme.txt file in the TestStand\Doc directory for more details.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-2 ni.com

Setting Up the Example
If you did not directly proceed from Chapter 5, Using Variables and
Properties, follow these steps to set up the TestStand sequence editor so
you can complete this tutorial session.

1. Close all windows in the sequence editor.

2. Select File»Open and open the file <TestStand>\Tutorial\
Sample4.seq that you created in Chapter 5, Using Variables and
Properties. You can also find this file in the <TestStand>\
Tutorial\Solution directory.

Creating a Virtual Instrument Code Module
In this exercise, you create a LabVIEW VI you will call from a sequence in
TestStand.

1. Ensure the LabVIEW Standard Prototype Adapter is properly
configured, as follows:

a. Select Configure»Adapters, which displays the Adapter
Configuration dialog box, shown in Figure 6-1.

Figure 6-1. Adapter Configuration

b. Select the LabVIEW Standard Prototype Adapter in the
Configurable Adapters section.

c. Click on the Configure button.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-3 Getting Started with TestStand

d. Verify that the Select Which LabVIEW ActiveX Server to Use
control is LabVIEW, as shown in Figure 6-2.

Figure 6-2. LabVIEW Adapter Configuration

e. Click on OK, and then Done to close the LabVIEW Adapter
Configuration and Adapter Configuration dialog boxes.

2. Select LabVIEW Standard Prototype Adapter in the Adapter Selector
Ring control.

3. Right click on the Power On test in the Main step group and select
Insert Step»Test»Numeric Limit Test from the context menu.

4. Rename the new step Clock Frequency Test.

5. Right click on the Clock Frequency Test and select Specify Module
from the context menu.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-4 ni.com

6. Enable the Show VI Front Panel When Called check box control. The
LabVIEW Step Module Information should now appear as shown in
Figure 6-3.

Figure 6-3. LabVIEW Step Module Information

With module adapters, you can use a source code template to generate
the source code shell for a step module. The template files are different
for each step type and each module adapter. Multiple source code
templates can be available for a particular adapter/step type
combination.

For each module adapter that supports source code templates, the
Specify Module dialog box contains a button for creating source code.
If more than one template is available for the step type, the adapter
prompts you to select from a list of available templates. Otherwise,
the adapter uses the only available template.

7. Click on the Create VI button on the Edit LabVIEW VI Call dialog
box. When you make this selection, TestStand prompts you to select a
pathname for the step’s code module.

8. Find the TestStand\Tutorial directory. Type the name
ClockFrequency.vi in the File name control. The VI might already
exist if someone else previously completed this session of the tutorial.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-5 Getting Started with TestStand

9. Click on OK to close the Select a pathname for the step’s code module
dialog box.

TestStand creates a new VI named Clock Frequency.vi using a
code template associated with the Numeric Limit Test step type and the
LabVIEW Standard Prototype adapter. TestStand then opens the new
VI in LabVIEW, as shown in Figure 6-4.

Figure 6-4. New Clock Frequency VI in LabVIEW

Notice that the Clock Frequency.vi front panel contains two
indicators, Test Data and error out clusters. The LabVIEW Standard
Prototype adapter uses these special data clusters to pass common data
between TestStand and the test VI. You can use the sequence context
and the TestStand API to access all sequence variables and properties
and to control sequence execution, as explained in Chapter 10, Using
ActiveX in Code Modules. Although there are other special data types

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-6 ni.com

that the module adapter supports for passing data, the Test Data and
error out clusters are required controls. Following is a list of the
different elements within these two clusters and how the adapter uses
them:

Test Data

• Pass/Fail Flag—The test VI sets this Boolean to indicate whether
the test passed.

• Numeric Measurement—Numeric measurement that the test VI
returns.

• String Measurement—String value that the test function returns.

• Report Text—Output message to display in the report.

error out

• Status—The test VI must set this Boolean to True if an error
occurs.

• Code—The test VI can set this to a non-zero value if an error
occurs.

• Source—The test VI can set this to a descriptive string if an error
occurs.

Refer to Chapter 13, Module Adapters, in the TestStand User Manual
for more details on these structures.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-7 Getting Started with TestStand

10. Add the following LabVIEW controls to the front panel, as shown in
Figure 6-5:

• Numeric control with the label Frequency Measurement

• String control with the label Additional Report Text

• Dialog button with the label Return

Figure 6-5. Completed Clock Frequency.vi Front Panel

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-8 ni.com

11. Wire the VI block diagram as shown in Figure 6-6.

Figure 6-6. Clock Frequency.vi Block Diagram

When you run the VI, the VI loops until you enter values in the
Frequency and Additional Report Text controls and click on the
Return button.

12. After you finish building the VI, save it by selecting File»Save in
LabVIEW.

13. Close the VI diagram and front panel.

14. Return to the sequence editor, and close the Edit LabVIEW VI Call
dialog box by clicking on OK.

15. Right click on the Clock Frequency Test and select the Edit Limits
command from the context menu, which displays the Edit Numeric
Limit Test dialog box.

16. Set the Comparison Type control to LT (<) and the value to 100,
as shown in Figure 6-7.

17. Since this step simulates measuring clock frequency of a motherboard,
change the units to MHz. Use the drop-down rings adjacent to the units
control to select Hertz as the units and Mega as the units prefix. The
Units control should now show the value of megahertz. Select the
Short Name item in each ring to use the short names. The Units control

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-9 Getting Started with TestStand

should now show the value of MHz. The units you specify appear in
both the report and the result database. The units and units prefix are
for display and documentation purposes and do not scale the measured
value or affect the limit comparison.

Figure 6-7. Edit Numeric Limits Test Dialog Box

18. Click on the Numeric Format button to open the Numeric Format
dialog box. Set the control values of this dialog box to those shown in
Figure 6-8. These settings specify the format of the step measurement
and limit values. The format applies to the limit values that appear in
the Edit Numeric Limit Test dialog box, the step description, and the
test report.

With these settings, TestStand compares the numeric measurement
value that the VI returns to the constant value of 100. If the comparison
is True, the step passes; otherwise, the step fails.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-10 ni.com

Figure 6-8. Numeric Format Dialog Box

19. Click on OK twice to close the Numeric Format dialog box and the
Edit Numeric Limit Test dialog box.

20. Save the sequence by selecting File»Save As. Save the sequence as
Sample5.seq in the TestStand\Tutorial directory.

21. Execute the sequence by selecting Execute»Single Pass. When
TestStand executes the Clock Frequency Test step, the VI front panel
appears and runs the VI.

22. Type a numeric value of 20 in the Frequency Measurement control.

23. Type any text in the Additional Report Text control.

24. Click on theReturn command button to return from the VI back to the
sequence execution.

25. When the sequence completes the execution, examine the test report.
Notice the status, measurement, and report text values for the Clock
Frequency step.

26. Close the Execution window.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-11 Getting Started with TestStand

Debugging a Virtual Instrument Code Module
TestStand not only allows you to debug sequences, but also to step into
debuggable LabVIEW VIs. In this exercise, you learn how to debug a
LabVIEW test VI while executing a sequence in the sequence editor.

1. Set a breakpoint on the Clock Frequency Test step by right clicking on
the step name and selecting Toggle Breakpoint, or by clicking to the
left of the steps icon.

2. Execute the sequence by selecting Execute»Single Pass.

3. Click on OK on the Test Simulator prompt. The execution then pauses
on the Clock Frequency Test step.

4. Click on the Step Into toolbar button, which displays the
Clock Frequency.vi front panel in LabVIEW. The VI test is now
in a paused state.

5. In LabVIEW, click on the Run toolbar button to execute the VI.

6. Select Windows»Show Diagram in the LabVIEW window to show
the block diagram of the VI.

7. Click on the Highlight Execution toolbar button, shown in Figure 6-9,
to highlight the flow of execution within the VI. You can set
breakpoints and probes within the VI for more detailed debugging.

Figure 6-9. LabVIEW Highlight Execution Mode

8. Click on the Highlight Execution toolbar button once again to turn off
execution highlighting.

9. Return to the front panel by selecting Windows»Show Panel.

10. Type a value of 200 in the Frequency Measurement control.

11. Type any text in the Additional Report text control.

12. Click on the Return command button to stop the VI.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-12 ni.com

13. Click on the Return to Caller toolbar button to return to the sequence
execution with the values in the TestData control and error out
indicator.

After the Clock Frequency Test step executes, TestStand suspends the
sequence execution on the Reset Loop Index step. Notice that the
status of the Clock Frequency Test step is Failed as expected.

Note If you do not return to caller, TestStand cannot continue the sequence execution.
A common mistake is to switch from debugging a VI to the sequence editor without
returning to caller. In this case, sequence execution appears to hang.

14. Select Debug»Resume to complete the execution.

15. Save Sample5.seq and close the Execution window and the
Sequence File window.

When performing a task inside of a step, such as displaying a dialog box,
you should monitor the state of the current TestStand execution. If the
execution is terminating, you should abort the task you are performing
within the VI. This functionality is implemented in the solution for this
example, <TestStand>\Tutorial\Solution\
Clock Frequency.vi.

Debugging a LabVIEW DLL Function Using the DLL
Flexible Prototype Adapter

In this exercise, you learn how to create a LabVIEW DLL test module that
is called using the DLL Flexible Prototype Adapter. You also learn how to
debug the module using the TestStand operator interface developed in
LabVIEW. This exercise requires LabVIEW version 6i or later, and
assumes a general familiarity with the LabVIEW development
environment.

If you are not using LabVIEW, but you do use LabWindows/CVI or create
C-style DLLs, you can skip this section and proceed to the Debugging a
LabWindows/CVI DLL Using the C/CVI Standard Prototype Adapter
section in this chapter.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-13 Getting Started with TestStand

Creating the Virtual Instrument Code
In this exercise, you complete a LabVIEW VI and use it to build a DLL
code module you will call from a sequence in TestStand. This DLL
function prompts the operator for a numeric value and additional report text
that is passed back to TestStand.

1. Launch the LabVIEW development environment by selecting
Programs»National Instruments»LabVIEW 6»LabVIEW from
the Start menu.

2. In LabVIEW, open <TestStand>\Tutorial\Clock Frequency

Function.vi. Switch to the diagram of this VI that has been partially
completed.

This exercise contains code that monitors the state of the current
TestStand execution. When performing a task inside of a step, such as
displaying a dialog box, you should monitor the execution state. If the
execution is being terminated or aborted, you should abort the task you
are performing within the VI. This functionality is implemented in
LabVIEW using the following VIs located in the TestStand function
palette: InitializeTerminationMonitor.vi,
GetMonitorStatus.vi, and CloseTerminationMonitor.vi.

3. Switch to the front panel of the VI and complete it as shown in
Figure 6-10. The Sequence Context control and indictors on the right
will be used to pass data into and out of the code module, respectively.
Unlike the LabVIEW Standard Prototype Adapter, you must define the
parameters of the code module when using the DLL Flexible Prototype
Adapter.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-14 ni.com

Figure 6-10. Clock Frequency Function Front Panel

4. Save the VI as ClockFrequencyFunction.vi by selecting
File»Save As in LabVIEW.

5. You must wire the control and the five indicators on the right of the
front panel to the VI’s connector pane. Right-click on VI icon in the
top right corner of the Front Panel and select Show Connector. Using
your wiring tool, assign a terminal to the control and each indictor as
shown in Figure 6-11. The arrangement and order of the connectors is
not important.

6. Complete the VI diagram as shown in Figure 6-11. Notice that the
While Loop halts if the operator clicks on the return button, if an error
occurs within the VI, or if the current TestStand execution is
terminated or aborted. The frequency measurement, additional report
text, and error information are returned to TestStand as parameters of
the DLL function.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-15 Getting Started with TestStand

Note LabVIEW does not currently create a DLL type library when one of the function
parameters is a Boolean. A type library allows TestStand to obtain the parameter
information for DLL functions. To simplify calling your function, convert the error status
from a Boolean to a 16-bit integer, as shown in Figure 6-11. Return this integer as the error
status function parameter.

Figure 6-11. Clock Frequency Function Diagram

7. Save the VI.

8. Configure the VI settings so that the VI displays its front panel when
called. Right-click on the VI icon in top right corner of the diagram
window and select VI Properties.

9. In the VI Properties dialog box, select Window Appearance from the
Category ring control, as shown in Figure 6-12. Click the Customize
button.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-16 ni.com

Figure 6-12. VI Properties Dialog Box

10. In the Customize Window Appearance dialog box, enable the options
Show Front Panel When Called and Close Afterwards if Originally
Closed. Click OK twice to return to the diagram window.

11. Save the VI.

Building a LabVIEW DLL Code Module
Now that you have completed the Clock Frequency Function.vi, you
must build it into a DLL function. Before you do this, close the VI.

1. In LabVIEW, open a new VI and select Tools»Build Application or
Shared Library (DLL).

2. Click the Load button on the Build Application or Shared Library
(DLL) dialog box and load the build script
<TestStand>\Tutorial\Clock Frequency.bld. Notice that the
Build Target control under the Target tab is set to Shared Library
(DLL).

3. Select the Source File tab. The exported VI should be Clock
Frequency Function.vi. Highlight this entry and click on the
Define VI Prototype button.

4. You need to add and configure the function parameters. Click the add
button marked with a “+” six times, once for each control and indicator
that you wired to the VI connector pane. The Parameter control should
list nine parameters, as shown in Figure 6-13. The parameters need not
be in the same order. LabVIEW requires the len and len2 parameters

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-17 Getting Started with TestStand

for the two string output parameters of this VI. These tell LabVIEW
the maximum string length to be returned by the DLL function.

Figure 6-13. Define VI Prototype Dialog Box

If your parameter control does not show these nine items, you did not
correctly wire the control and indicators to the VI connector pane.
Rewire the control and indicators for the VI connector pane before
continuing.

5. Use the up and down arrows and reorder the parameters to match the
order of the parameters in Figure 6-13. The parameters must be in the
same order in which they are called from the sequence.

6. Enable Standard Calling Conventions radio control.

7. Click OK to close the Define VI Prototype dialog box.

8. Click on the Build button of the Build Application or Shared Library
(DLL) dialog box. Once the build is complete, close all LabVIEW
dialog boxes and return to the sequence editor.

Note If LabVIEW returns a file permission error (Error 8) when you build the DLL, return
to the sequence editor and select File»Unload All Modules. When you make this
selection, TestStand unloads all step code modules, which includes DLLs, VIs and any
other modules the adapter loads. Return to LabVIEW and rebuild the DLL.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-18 ni.com

Refer to LabVIEW documentation for additional information about
building DLLs in LabVIEW.

Calling the LabVIEW DLL function
Now that you have created the LabVIEW DLL function, create a step that
calls this function.

1. Close all windows in the sequence editor.

2. Select File»Open and open the file <TestStand>\Tutorial\
Sample4.seq, which you created in Chapter 5, Using Variables and
Properties. You also can find this file in the <TestStand>\
Tutorial\Solution directory.

3. Select the DLL Flexible Prototype Adapter in the Adapter Selector
Ring control.

4. If you completed this or a preceding exercise, a step with the name
Clock Frequency Test may already exist. Delete the step.

5. Right-click on the Power On test in the Main step group and select
Insert Step»Test»Numeric Limit Test from the context menu.

6. Name the new step Clock Frequency Test.

7. Save the sequence as Sample6.seq in the <TestStand>\Tutorial
directory by selecting File»Save As.

8. Right-click on the Clock Frequency Test step and select the Specify
Module command in the context menu. The sequence editor displays
the Edit DLL Call dialog box.

9. On the Module tab, click on the Browse button next to the DLL
Pathname control.

10. Select the ClockFrequency.dll that you created.

11. Ensure that the Calling Convention control is set to Standard Call
(stdcall).

12. Select the function ClockFrequencyFunction in the Function
Name ring control. TestStand reads the parameter from the DLL type
library and displays the function prototype, as shown in Figure 6-14.

Note TestStand may display a message saying the function does not have parameter
information in the DLL. LabVIEW does not currently create a DLL type library when one
of the function parameters is a Boolean. Modify your LabVIEW VI and rebuild the DLL
or enter each parameter manually. If you enter the parameters manually, make sure that
they match the function prototype that you created in LabVIEW when you built the DLL.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-19 Getting Started with TestStand

Figure 6-14. Edit DLL Call Dialog Box

13. Enter the value expressions shown below for the eight function
parameters.

Parameter Name Value Expression

sequenceContext ThisContext

Frequency Step.Result.Numeric

errorStatus Step.Result.Error.Ocurred

errorCode Step.Result.Error.Code

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-20 ni.com

Note If the Edit Prototype control is not checked then you cannot add new parameters or
edit existing parameters. This control is automatically checked when you exit the Edit DLL
call dialog box by clicking the OK button.

When you finish adding the parameters and their expressions, the value
of the Function Call control should match the value shown below.

ClockFrequencyFunction(ThisContext,

&Step.Result.Numeric,

&Step.Result.Error.Occurred,
&Step.Result.Error.Code,
Step.Result.Error.Msg,
Step.Result.ReportText, 1024, 1024)

14. Click OK to close the Edit DLL Call dialog box.

15. In the main sequence editor window, select File»Save to save the
sequence file changes.

16. In the Sequence File window, right-click on the Clock Frequency Test
step and select Properties from the context menu. On the Run Options
tab, select If Initially Active, Re-Activate When Step Completes
from the TestStand Window Activation control.

17. Click on the OK button to close the Clock Frequency Test Properties
dialog box.

18. In the Sequence File window, right-click on the Clock Frequency Test
step and select Edit Limits from the context menu, which displays the
Edit Numeric Limit Test dialog box.

19. Set the Comparison Type control to LT (<) and the value to 100,
as shown in Figure 6-15.

20. Since this step simulates measuring clock frequency of a motherboard,
change the units to MHz. Use the drop-down rings adjacent to the units
control to select Hertz as the units and Mega as the units prefix. The
Units control should now show the value of megahertz. Select the
Short Name item in each ring to use the short names. The Units control
should now show the value of MHz. The units you specify appear in

errorMessage Step.Result.Error.Msg

additionalText Step.Result.ReportText

len 1024

len2 1024

Parameter Name Value Expression

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-21 Getting Started with TestStand

both the report and the result database. The units and units prefix are
for display and documentation purposes and do not scale the measured
value or affect the limit comparison.

Figure 6-15. Edit Numeric Limits Test Dialog Box

21. Click on the Numeric Format button to open the Numeric Format
dialog box. Set the control values of this dialog box to those shown in
Figure 6-16. These settings specify the format of the step measurement
and limit values. The format applies to the limit values that appear in
the Edit Numeric Limit Test dialog box, the step description, and the
test report.

With these settings, TestStand compares the numeric measurement
value that the VI returns to the constant value of 100. If the comparison
is True, the step passes; otherwise, the step fails.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-22 ni.com

Figure 6-16. Numeric Format Dialog Box

22. Click on OK twice to close the Numeric Format dialog box and the
Edit Numeric Limit Test dialog box.

23. Save Sample6.seq by selecting File»Save.

24. Select Execute»Single Pass to execute the sequence.

25. Click Done in the Test Simulator dialog box. When TestStand executes
the Clock Frequency Test step, the code module displays the user
interface panel and waits for input.

26. Type a numeric value of 20 in the Frequency Measurement control.

27. Type any text in the Additional Report Text control.

28. Click the Return button to continue the sequence execution.

29. When the sequence completes the execution, examine the test report.
Notice the values for the status, measurement, and report text for the
Clock Frequency step.

30. Close the Execution window.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-23 Getting Started with TestStand

Debugging the DLL Function
Currently, the method for debugging a LabVIEW DLL function requires
you to call the DLL from within the LabVIEW development environment.
To do this, you use the LabVIEW operator interface.

1. Open the file <TestStand>\Tutorial\Clock Frequency
Function.vi that you previously built into a DLL function.

2. Place a break point in the diagram of this VI.

3. Open and run the LabVIEW operator interface in the LabVIEW
development environment by selecting Start»Programs»National
Instruments»TestStand» Operator Interfaces»LabVIEW or by
opening and running<TestStand>\OperatorInterfaces\NI\LV
TestStand - Runtime Operator Interface.vi.

Note The VIs of the LabVIEW operator interface that ship with TestStand were written in
version 5.1.1 of LabVIEW. If you have a more recent version of LabVIEW you should
mass compile your VIs to decrease the loading time of these VIs.

4. After you log in, open <TestStand>\Tutorial\Sample6.seq

within the operator interface and run it by clicking on the Single Pass
button.

When the sequence step calls the DLL function, LabVIEW stops at the
breakpoint you set in Clock Frequency Function.vi. You can use the
standard LabVIEW debugging techniques to execute the VI. After you
execute the VI, return to the Execution Display window of the operator
interface to view the step results in the report.

Debugging a LabWindows/CVI DLL Using the C/CVI
Standard Prototype Adapter

In this exercise, you learn how to create a LabWindows/CVI DLL code
module that is called with the LabWindows/CVI Standard Prototype
Adapter. You also learn how to debug the module by stepping into the
LabWindows/CVI code from the sequence editor. This session of the
tutorial assumes a general familiarity with the LabWindows/CVI
development environment. If you are not using LabWindows/CVI but you
create C-style DLLs, you can skip this section and proceed to Debugging a
LabWindows/CVI DLL Using the DLL Flexible Prototype Adapter.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-24 ni.com

Note Verify that you are using the appropriate version of LabWindows/CVI with
TestStand. Refer to the readme.txt file in the TestStand\Doc directory for more
details.

Setting Up the Example
If you did not directly proceed from Chapter 5, Using Variables and
Properties, follow these steps to set up the TestStand sequence editor so
you can complete this tutorial session.

1. Close all windows in the sequence editor.

2. Select File»Open and open the file <TestStand>\Tutorial\
Sample4.seq, which you created in Chapter 5, Using Variables and
Properties. You also can find this file in the <TestStand>\
Tutorial\Solution directory.

Creating a C/CVI Code Module Test
In this exercise, you create a LabWindows/CVI code module called using
the C/CVI Standard Prototype Adapter that can prompt for a numeric value
from the operator and pass the data back to TestStand.

1. Ensure the LabWindows/CVI Standard Prototype Adapter is properly
configured to execute code modules in an external instance of
LabWindows/CVI as follows:

a. Select Configure»Adapters, which displays the Adapter
Configuration dialog box, shown in Figure 6-17.

Figure 6-17. Adapter Configuration

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-25 Getting Started with TestStand

b. Select the LabWindows/CVI Standard Prototype Adapter in the
Configurable Adapters section.

c. Click on the Configure button, which displays the C/CVI
Standard Adapter Configuration dialog box.

d. Verify that Execute Steps in an External Instance of CVI is
enabled, and that the pathname of the LabWindows/CVI project
containing the execution server is the file tscvirun.prj from
the TestStand\AdapterSupport\CVI directory, as shown in
Figure 6-18.

Figure 6-18. C/CVI Standard Adapter Configuration

e. Click on OK to close the C/CVI Standard Adapter Configuration
dialog box. TestStand warns you that changing where tests are
executed unloads all modules.

f. Click on OK on the Warning dialog box.

g. Click on Done to close the Adapter Configuration dialog box.

2. Verify that C/CVI Standard Prototype Adapter is selected in the
Adapter Selector Ring control.

3. Right click on the Power On test in the Main step group and select
Insert Step»Tests»Numeric Limit Test from the context menu.

4. Rename the step Clock Frequency Test.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-26 ni.com

5. Right click on the Clock Frequency Test and select Specify Module
from the context menu. When you make this selection, the sequence
editor displays the Edit C/CVI Module Call dialog box.

6. For the Module Type ring control, select Dynamic Link Library
(*.dll).

7. Type the name frequency.dll in the Module Pathname control.
The DLL file might already exist if someone previously completed this
tutorial.

8. Enter the name GetFrequency in the Function Name control of the
Edit C/CVI Module Call dialog box.

9. Enable the Pass Sequence Context checkbox.

Figure 6-19 shows the completed Module tab.

Figure 6-19. Edit CVI Module Call—Module Tab

10. Click on the Source Code tab. You can use the Source Code tab to
generate or edit the source code for the function the step calls.

11. Click on the Browse button to the right of the Pathname of Source File
Containing Function control, and select the frequency.c file in the
TestStand\Tutorial directory.

12. Click on the OK button to close the Select a pathname for the source
file dialog box.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-27 Getting Started with TestStand

13. Click on the Browse button to the right of the Pathname of CVI Project
File to Open control, and select the frequency.prj file in the
TestStand\Tutorial directory.

14. Click on the OK button to close the Select a pathname for the CVI
project file dialog box.

Figure 6-20 shows the completed Source Code tab for the Edit C/CVI
Module Call dialog box.

Figure 6-20. Edit CVI Module Call—Source Code Tab

Module adapters can generate a source code shell for a step module
using predefined templates. The available templates vary based on the
step type and each module adapter. For each module adapter that
supports source code templates, the Specify Module dialog box
displays a command button for creating source code. If more than one
template is associated with the step type and the specific adapter, the
adapter prompts you to select a template, otherwise the adapter creates
the code module from the default template.

15. Click on the Create Code button.

When you make this selection TestStand does the following:

1. Launches an external instance of LabWindows/CVI

2. Creates a new project file if one does not exist

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-28 ni.com

3. Loads and saves the project file in LabWindows/CVI

4. Creates and saves a new source file if it does not exist

5. Generates and saves the source file with a template function

6. LabWindows/CVI highlights the function name

16. Figure 6-21 shows the generated function in the frequency.c
source file.

Figure 6-21. Generated Result from Create Code Command

Note If someone else previously completed this session of the tutorial, the function
GetFrequency might already exist in the source file. When LabWindows/CVI prompts
you to replace the existing function, click on the Replace button to continue with this
tutorial session.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-29 Getting Started with TestStand

The GetFrequency prototype function contains two parameters,
tTestData and tTestError. The LabWindows/CVI Standard
Prototype Adapter uses these parameters to pass common data
between TestStand and the code module. Following is a list of the
different elements within these two structures and how the adapter uses
them.

tTestData

• result—Set by test function to indicate whether the test passed.

• measurement—Numeric measurement that the test function
returns.

• inBuffer—For passing a string parameter to a test function.

• outBuffer—Output message to display in the report.

• modPath—Directory path of module containing the test function.

• modFile—Filename of module containing the test function.

• hook—Reserved (no longer used).

• hookSize—Reserved (no longer used).

• mallocFuncPtr—Contains a function pointer to malloc, which
a code module must use to allocate memory for any buffer that it
assigns to the inBuffer, outBuffer, and errorMessage

fields.

• freeFuncPtr—Contains a function pointer to free, which a
code module must use to free any buffers that the inBuffer,
outBuffer, and errorMessage fields point to.

• seqContextDisp—A dispatch pointer to the sequence context.

• seqContextCVI—A CVI ActiveX Automation handle for the
sequence context.

• stringMeasurement—String value that the test function
returns.

• structVersion—Structure version number.

• replaceStringFuncPtr—Contains a function pointer to a
ReplaceString function, which a code module can use to
change the value of any buffers that the inBuffer, outBuffer,
and errorMessage fields point to.

tErrorData

• errorFlag—The test function must set this to True if an error
occurs.

• errorLocation—Reserved (no longer used).

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-30 ni.com

• errorCode—The test function can set this to a non-zero value if
an error occurs.

• errorMessage—The test function can set this to a descriptive
string if an error occurs.

Refer to Chapter 12, Module Adapters, in the TestStand User Manual
for more details on these structures.

17. Update the Frequency.c code to prompt an operator to enter values
into a frequency numeric control and a report text string control using
the frequency.uir user interface resource file, as follows:

a. Leaving the Frequency.c window open, return to the project
window by selecting Windows»Project.

b. Open the Frequency.uir file from the Project window.

c. Right-click on the Return button and select Generate Control
Callback from the context menu. If you have more than one .c
file open, LabWindows/CVI prompts you to select a target file into
which to insert the callback. Select frequency.c as the target
file.

d. You have just created the ReturnCallback function in
Frequency.c. The ReturnCallback function quits the user
interface. Close the UIR file after you are done, you will not be
making any changes to it.

e. Update the source code for the GetFrequency and
ReturnCallback function as shown. The other functions in the
source file do not need modification. Changed lines appear in
bold.

void __declspec(dllexport) TX_TEST

GetFrequency(tTestData *testData, tTestError

*testError)

{

int error = 0;

int panelHandle, panel, control;

char stringBuffer[512];

panelHandle = LoadPanelEx (0, "frequency.uir",

PANEL, __CVIUserHInst);

if (panelHandle < 0)

{

error = panelHandle;

goto Error;

}

DisplayPanel (panelHandle);

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-31 Getting Started with TestStand

//Automatically closes user display dialog when

//TestStand execution terminates or aborts.

TS CancelDialogIfExecutionStops (panelHandle,

testData->seqContextCVI);

RunUserInterface();

// Assign values from UIR to return data structure

GetCtrlVal (panelHandle, PANEL_FREQUENCY,

&testData->measurement);

GetCtrlVal (panelHandle,

PANEL_ADDITIONAL_REPORT, stringBuffer);

testData->replaceStringFuncPtr(&testData->

outBuffer, stringBuffer);

Error:

// FREE RESOURCES

DiscardPanel(panelHandle);

// If an error occurred, set the error flag to

// cause a run-time error in TestStand.

if (error < 0)

{

testError->errorFlag = TRUE;

// OPTIONALLY SET THE ERROR CODE AND STRING

testError->errorCode = error;

testData->replaceStringFuncPtr(

&testError->errorMessage, "A run-time error

occurred.");

}

return;

}

intCVICALLBACK ReturnCallback (int panelHandle, int

control, int event, void*callbackData, int

eventData1, int eventData2

{

switch(event)

{

case EVENT_COMMIT:

QuitUserInterface(0);

break;

}

return 0;

}

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-32 ni.com

18. Compile the Frequency.c source code by selecting Build»Compile
File to verify that your changes are correct.

Note When performing a task within a step module, such as displaying a dialog box,
monitor the status of the TestStand execution under which the step module was called. If
the execution terminates or aborts, you should abort the task you are performing within the
step module. The function TS_CancelDialogIfExecutionStops() is used in step
modules that display dialog boxes that you want to close automatically when execution
terminates or aborts. This function assumes that your program controls the dialog box
through a call to RunUserInterface.

19. Save the source code after you successfully compile.

20. Rebuild the DLL by selecting Build»Create Dynamic Link Library
in the Project window. If the DLL already exists, overwrite the
existing copy.

Note If LabWindows/CVI returns a file permission error when creating the DLL, return
to the sequence editor and select the Unload All Modules command from the File menu.
When you make this selection, TestStand unloads all step code modules, which include
DLLs, VIs and any other modules the adapter loads. Return to LabWindows/CVI and
rebuild the DLL.

21. Close the external instance of LabWindows/CVI that contains the
frequency.prj DLL project.

22. In the TestStand sequence editor, close the Edit C/CVI Module Call
dialog box by clicking on the OK button.

23. In the Sequence File window, right click on the Clock Frequency Test
and select Edit Limits from the context menu.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-33 Getting Started with TestStand

24. In the Edit Numeric Limit Test dialog box, set the comparison type to
less than, LT (<), and the measurement value to 100, as shown in
Figure 6-22.

Figure 6-22. Edit Numeric Limits Test Dialog Box

25. Since this step simulates measuring clock frequency of a motherboard,
change the units to MHz. Use the drop-down rings adjacent to the units
control to select Hertz as the units and Mega as the units prefix. The
Units control should now show the value of megahertz. Select the
Short Name item in each ring to use the short names. The Units control
should now show the value of MHz. The units you specify appear in
both the report and the result database. The units and units prefix are
for display and documentation purposes and do not scale the measured
value or affect the limit comparison.

26. Click on the Numeric Format button to open the Numeric Format
dialog box. Set the control values of this dialog box to those shown in
Figure 6-23. These settings specify the format of the step measurement
and limit values. The format applies to the limit values that appear in

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-34 ni.com

the Edit Numeric Limit Test dialog box, the step description, and the
test report.

With these settings, TestStand compares the numeric measurement
value that the VI returns to the constant value of 100. If the comparison
is True, the step passes; otherwise, the step fails.

Figure 6-23. Numeric Format Dialog Box

27. Click on OK twice to close the Numeric Format dialog box and the
Edit Numeric Limit Test dialog box.

28. Save the sequence by selecting File»Save As. Save the sequence as
Sample7.seq in the TestStand\Tutorial directory.

29. Execute the sequence by selecting Execute»Single Pass. TestStand
launches a new external instance of LabWindows/CVI to execute
steps.

30. Click on Done in the Test Simulator dialog box.

When TestStand executes the Clock Frequency Test step, the code
module displays the user interface panel and waits for input.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-35 Getting Started with TestStand

31. Type a numeric value of 20 in the Frequency Measurement control.

32. Type any text in the Additional Report Text control.

33. Click on the Return button to continue the sequence execution.

34. When the sequence completes the execution, examine the test report.
Notice the values for the status, measurement, and report text for the
Clock Frequency step.

35. Close the Execution window.

Debugging a CVI Code Module
TestStand not only allows you to debug sequences, but also to step directly
into debuggable LabWindows/CVI code modules. In this exercise, you
examine how to debug a LabWindows/CVI code module while executing
a sequence in the sequence editor.

1. Set a breakpoint on the Clock Frequency Test step by right clicking on
the step name and selecting Toggle Breakpoint. Remember that a
breakpoint is enabled for a step if a stop sign icon is visible to the left
of the step name in the sequence window.

2. Execute the sequence by selecting Execute»Single Pass.

3. Click on Done on the Test Simulator prompt. The execution pauses on
the Clock Frequency Test step.

4. Click on the Step Into toolbar button, which activates an external
instance of LabWindows/CVI and enters a breakpoint state on the
GetFrequency function, as shown in Figure 6-24.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-36 ni.com

Figure 6-24. Stepping into the GetFrequency Function

5. Using the Run»Step Over command in the menu in
LabWindows/CVI, step through the code module.

Note The LabWindows/CVI debugging window remains in the foreground while you are
debugging. Switch to the Clock Frequency dialog box to enter values into the controls.

6. When the user interface resource displays, type a value of 200 in the
Frequency Measurement control.

7. Type any text into the Additional Report Text control.

8. Click on the Return button.

9. Exit the function by selecting Run»Finish Function to return to the
sequence execution.

10. After the Clock Frequency Test step executes, TestStand suspends the
sequence execution on the Reset Loop Index step. Notice that the
status of the Clock Frequency Test step is Failed as expected.

11. Select Debug»Resume to complete the sequence execution.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-37 Getting Started with TestStand

12. Close the Execution window and the Sequence File window.

13. If TestStand prompts you to save the sequence file, save the sequence
as Sample7.seq in the TestStand\Tutorial directory.

Debugging a LabWindows/CVI DLL Using the DLL
Flexible Prototype Adapter

In this exercise, you create a LabWindows/CVI DLL code module and call
it using the DLL Flexible Prototype Adapter. You also learn how to debug
this module by launching the sequence editor from the LabWindows/CVI
development environment.

While this exercise uses LabWindows/CVI to create and debug the code
module, the information about the DLL Flexible Prototype Adapter and the
debugging techniques are applicable when you call C-style DLLs written
in other application development environments. If you are not using
LabWindows/CVI and do not create C-style DLLs, you can skip this
section and proceed to Chapter 7, Using Run-Time Operator Interfaces.

Setting Up the Example
If you did not directly proceed from Chapter 5, Using Variables and
Properties, follow these steps to set up the TestStand sequence editor so
you can complete this tutorial session.

1. Close all windows in the sequence editor.

2. Select File»Open and open the file <TestStand>\Tutorial\
Sample4.seq, which you created in Chapter 5, Creating and
Debugging Tests. You also can find this file in the <TestStand>\
Tutorial\Solution directory.

Creating the LabWindows/CVI Code Module
In this exercise, you create a LabWindows/CVI code module that can
prompt the operator for a numeric value and pass the data back to
TestStand.

1. Make sure that the DLL Flexible Prototype Adapter is selected in the
Adapter Selector Ring control.

2. Right-click on the Power On test in the Main step group and select
Insert Step»Tests»Numeric Limit Test from the context menu.

3. Rename the step Clock Frequency Test.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-38 ni.com

4. Right-click on the Clock Frequency Test step and select Specify
Module from the context menu, which displays the Edit DLL Call
dialog box as shown in Figure 6-25.

Figure 6-25. Edit DLL Dialog Box for a LabWindows/CVI Code Module

5. On the Module tab, type FlexFrequency.dll in the DLL Pathname
control.

6. Type ClockFrequency in the Function Name control.

7. Ensure that the Calling Convention control is set to Standard Call
(stdcall).

8. Unlike the C/CVI Standard Prototype Adapter, you must define the
parameters of the code module when using the DLL Flexible Prototype

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-39 Getting Started with TestStand

Adapter. You must enter the desired parameters and then have
TestStand generate your C code. Click on the New button to begin
adding the first parameter for the function.

9. Rename the arg1 parameter seqContextCVI. The name of the
argument is not critical; you can choose the name of the argument.
Avoid using spaces within the parameter names since these will be
used as the parameter names within your C code.

10. Select Object in the Category ring control.

11. Select CVI ActiveX Automation Handle in the Object Type ring
control.

12. Enter the expression, ThisContext, in the Value Expression control.

13. Set the Pass control to By Value.

14. Add the five other parameters of your DLL function in a similar
manner. To add each parameter, start by clicking on the New button.
Use the values in Table 6-1 to complete the control settings for each
parameter.

Note If the Edit Prototype control is not enabled, you cannot add new parameters or edit
existing parameters. This control is automatically enabled when you exit the Edit DLL call
dialog box by clicking the OK button.

Table 6-1. Parameter Control Table of Values

Control Value

Parameter Name:

Value Expression:

Result Action:

Category:

Data Type:

Pass:

measurement

Step.Result.Numeric

No Action

Numeric

64-bit Real Number (double)

By Reference (by pointer)

Parameter Name:

Value Expression:

Category:

Pass:

Number of Elements:

addReportTxt

Step.Result.ReportText

String

C String Buffer

1024

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-40 ni.com

When you finish adding the parameters and their settings, the value of
the Prototype control, which is automatically generated, should match
the value shown below.

void ClockFrequency(CAObjHandle seqContextCVI, double

*measurement, char addReportTxt[1024], short
*errorOccurred, long *errorCode, char
errorMsg[1024])

Parameter Name:

Value Expression:

Result Action:

Category:

Data Type:

Pass:

errorOccurred

Step.Result.Error.Occurred

No Action

Numeric

Signed 16-bit Integer

By Reference (by pointer)

Parameter Name:

Value Expression:

Result Action:

Category:

Data Type:

Pass:

errorCode

Step.Result.Error.Code

No Action

Numeric

Signed 32-bit Integer

By Reference (by pointer)

Parameter Name:

Value Expression:

Category:

Pass:

Number of Elements:

errorMsg

Step.Result.Error.Msg

String

C String Buffer

1024

Table 6-1. Parameter Control Table of Values (Continued)

Control Value

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-41 Getting Started with TestStand

In addition, the value of the Function Call control should match the
value shown below.

ClockFrequency(ThisContext, &Step.Result.Numeric,

Step.Result.ReportText,

&Step.Result.Error.Occurred,

&Step.Result.Error.Code,
Step.Result.Error.Msg)

15. Select the Source Code tab of the Edit DLL Call dialog box and type
FlexFrequency.c as the value of the Pathname of Source File
Containing Function control. Directly beneath this control you should
see the message (File not Found). If the file is found, then either
another user has completed the exercise, or the <TestStand>/
Tutorial/Solutions directory has been added as one of the
TestStand search directories. In this case, choose a different file name.

16. Click the Create Code button.

17. Choose a pathname for the source file. Browse to the
<TestStand>/Tutorial directory and click the OK button, which
displays the Choose Code Template dialog box shown in Figure 6-26.

Figure 6-26. Choose Code Template Dialog Box

18. Select the first option, TestStand numeric limit template –
NumericLimit_Template, and click the OK button.

19. The template is based on an existing .c file that ships with TestStand.
The function within this .c file has default parameters that are
different than those you have just specified. TestStand prompts you to

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-42 ni.com

resolve the differences in the parameters by displaying a Prototypes
Conflict dialog box shown in Figure 6-27.

Figure 6-27. Prototypes Conflict Dialog Box

20. Select Use Prototype From the Module Tab and then click the OK
button.

21. TestStand either opens the .c file with an application on your system
that is registered to open files with a *.c extension, or it prompts you
to launch Notepad to view the newly created .c file. After viewing the
.c file, return to the sequence editor and click the OK button to close
the Edit DLL Call dialog box.

22. In the Sequence File window, right-click on the Clock Frequency Test
and select Edit Limits from the context menu, which displays the Edit
Numeric Limit Test dialog box.

23. Set the Comparison Type control to LT (<) and the value to 100,
as shown in Figure 6-28.

24. Since this step simulates measuring clock frequency of a motherboard,
change the units to MHz. Use the drop-down rings adjacent to the units
control to select Hertz as the units and Mega as the units prefix. The
Units control should now show the value of megahertz. Select the
Short Name item in each ring to use the short names. The Units control
should now show the value of MHz. The units you specify appear in
both the report and the result database. The units and units prefix are
for display and documentation purposes and do not scale the measured
value or affect the limit comparison.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-43 Getting Started with TestStand

Figure 6-28. Edit Numeric Limits Test Dialog Box

25. Click on the Numeric Format button to open the Numeric Format
dialog box. Set the control values of this dialog box to those shown in
Figure 6-29. These settings specify the format of the step measurement
and limit values. The format applies to the limit values that appear in
the Edit Numeric Limit Test dialog box, the step description, and the
test report.

With these settings, TestStand compares the numeric measurement
value that the VI returns to the constant value of 100. If the comparison
is True, the step passes; otherwise, the step fails.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-44 ni.com

Figure 6-29. Numeric Format Dialog Box

26. Click OK twice to close the Numeric Format and Edit Numeric Limit
Test dialog boxes.

27. Save the sequence as Sample8.seq by selecting File»Save As and
save to the <TestStand>\Tutorial directory.

Building a LabWindows/CVI DLL
1. You now need to create a LabWindows/CVI project with which to

build a DLL module. Launch LabWindows/CVI by selecting
Start»Programs»National Instruments»Measurement Studio»
CVI IDE.

2. Open a new project by selecting File»New»Project. If
LabWindows/CVI already has a project loaded, it prompts you as to
whether you want to unload the current project. Click the Yes button.
LabWindows/CVI prompts you as to whether to transfer the current
project options to the new project. Uncheck all options in the Transfer
Project Options dialog box and click the OK button.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-45 Getting Started with TestStand

3. Select Edit»Add Files to Project»All Files (*.*) to open the Add
Files to Project dialog box. Browse to each of the files below and use
the Add button to add them to the Selected Files control.

• TestStand\Tutorial\FlexFrequency.c

• TestStand\Tutorial\Frequency.uir

• TestStand\API\CVI\tsapicvi.fp

• TestStand\API\CVI\tsutil.fp

After adding all files, click the OK button to return to the project
window where the file names should be displayed.

4. Save the project as FlexFreuency.prj in the
<TestStand>\Tutorial directory by selecting File»Save.

5. Open the FlexFequency.c file by double clicking on the name of the
file in the Project window.

6. Update the FlexFrequency.c code to prompt an operator to enter
values into a frequency numeric control and a report text string control
using the frequency.uir user interface resource file, as follows.

a. Leaving the FlexFrequency.c window open, return to the
project window by selecting Windows»Project.

b. Open the frequency.uir file from the Project window.

c. Right-click on the Return button and select Generate Control
Callback from the context menu. If for some reason you have
more than one .c file open, LabWindows/CVI prompts you to
select a target file into which to insert the callback. Select
FlexFrequency.c as the target.

d. You just created the ReturnCallback function in
FlexFrequency.c that quits the user interface. Close the .uir
file after you are done since you will not be making any changes
to it.

e. Update the source code for the ClockFrequency and
ReturnCallback function. The other functions in the source file
do not need modification. Changed lines appear in bold.

void __declspec(dllexport) __stdcall

ClockFrequency(CAObjHandle seqContextCVI, double

*measurement, char addReportTxt[1024], short

*errorOccurred, long *errorCode, char

errorMsg[1024])

{

int error = 0;

int panelHandle, panel, control;

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-46 ni.com

panelHandle = LoadPanelEx (0, "frequency.uir",

PANEL, __CVIUserHInst);

if (panelHandle < 0)

{

error = panelHandle;

goto Error;

}

DisplayPanel (panelHandle);

// Automatically closes user display dialog when

// TestStand execution terminates or aborts.

TS_CancelDialogIfExecutionStops (panelHandle,

seqContextCVI);

RunUserInterface();

// Assign values from UIR to return data

GetCtrlVal (panelHandle, PANEL_FREQUENCY,

measurement);

GetCtrlVal (panelHandle,

PANEL_ADDITIONAL_REPORT, addReportTxt);

Error:

// FREE RESOURCES

DiscardPanel(panelHandle);

// If an error occurred, set the error flag to

cause

// a run-time error in TestStand.

if (error < 0)

{

*errorOccurred = TRUE;

// OPTIONALLY SET THE ERROR CODE AND STRING

*errorCode = error;

strcpy(errorMsg, "A run-time error occurred.");

}

return;

}

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-47 Getting Started with TestStand

int CVICALLBACK ReturnCallback (int panelHandle, int

control, int event,void *callbackData, int

eventData1, int eventData2)

{

switch (event)

{

case EVENT_COMMIT:

QuitUserInterface (0);

break;

}

return 0;

}

7. From the Project window select Build»Target Type»Dynamic Link
Library so that the project builds a DLL.

8. Build the DLL by selecting Build»Create Debuggable Dynamic
Link Library. If the only option is Build»Create Release Dynamic
Link Library then select Build»Configuration»Debug before
building the DLL. LabWindows/CVI reports when the DLL is
successfully built.

9. You are now ready to execute the sequence that calls your DLL
function. Return to the sequence editor and execute the sequence by
selecting Execute»Single Pass.

10. Click on Done in the Test Simulator dialog box. When TestStand
executes the Clock Frequency Test step, the code module displays the
user interface panel and waits for input.

11. Type a numeric value of 20 in the Frequency Measurement control.

12. Type any text in the Additional Report Text control.

13. Click on the Return button to continue the sequence execution.

14. When the sequence completes the execution, examine the test report.
Notice the values for the status, measurement, and report text for the
Clock Frequency step

15. Close the Execution window.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-48 ni.com

Debugging the DLL Function
To debug DLLs that are called with the DLL Flexible Prototype Adapter,
you must use the debugging features of the application development
environment in which the DLL was written. This exercise shows how to
use the capabilities of LabWindows/CVI to debug LabWindows/CVI DLL
functions that are called using the DLL Flexible Prototype Adapter.

1. Exit the sequence editor.

2. In LabWindows/CVI, select File»Open»Project. Navigate to
<TestStand>\Tutorial\ and open FlexFequency.prj.

3. In the project window, select Run»Select External Process. Click the
Browse button and select <TestStand>\bin\SeqEdit.exe.

4. Click OK to return to the LabWindows/CVI Project window. Select
Run»Run SeqEdit.exe to launch the sequence editor from
LabWindows/CVI. If prompted to save changes, select Yes.
LabWindows/CVI starts the sequence editor as an external process and
attaches to it for debugging.

5. Once the sequence editor has been launched and you have logged in,
open your sequence file, <TestStand>\Tutorial\Sample8.seq.
You also can find this file in the <TestStand>\Tutorial\
Solution directory.

6. Place a breakpoint on the Clock Frequency Test step.

Note Place a breakpoint by clicking to the left of a step icon or by pressing F9 while your
cursor is on that particular line.

7. Execute the sequence by selecting Execute»Single Pass.

8. Click on Done in the Test Simulator dialog box. When TestStand stops
at the Clock Frequency Test step, press the F8 key to step into the DLL
function. You can also step into the function by selecting Debug»Step
Into or by using the Step Into button on the sequence editor toolbar.

The execution stops on the first line of the function definition in
FlexFrequency.c as shown in Figure 6-30. In the LabWindows/CVI
debugging window, you can use the LabWindows/CVI stepping tools,
watch window, and variable window to debug the code.

Chapter 6 Creating and Debugging Tests

© National Instruments Corporation 6-49 Getting Started with TestStand

Figure 6-30. Debugging the ClockFrequency function

9. The ClockFrequency function calls the RunUserInterface
function, which displays the Clock Frequency dialog box. Because the
LabWindows/CVI debugging window remains in the foreground while
you are debugging, you may need to switch to the Clock Frequency
dialog box to enter values in its controls.

10. Type a numeric value of 20 in the Frequency Measurement control of
the Clock Frequency dialog box.

11. Type any text in the Additional Report Text control of the Clock
Frequency dialog box.

12. Click on the Return button to continue.

13. LabWindows/CVI honors any breakpoints you set in the source files
for the DLL. When the Clock Frequency step executes, the sequence
execution stops at the first breakpoint you set in the source code.

Chapter 6 Creating and Debugging Tests

Getting Started with TestStand 6-50 ni.com

14. Finish stepping through your DLL function until you return to the
sequence execution and complete execution. This debugging technique
can also be applied to steps that use the C/CVI Standard Prototype
Adapter.

15. Close the sequence execution window and shut down the sequence
editor.

Note You can use a similar technique in other application development environments from
which you can launch and attach to an external process. For additional debugging
information refer to National Instruments developer zone at ni.com.

This concludes this tutorial session. In the next session, you learn how to
use the TestStand operator interfaces.

© National Instruments Corporation 7-1 Getting Started with TestStand

7
Using Run-Time Operator
Interfaces

In this chapter, you learn how to use the LabWindows/CVI operator
interface. The features that this chapter discusses also apply to the
LabVIEW, Visual Basic, and Delphi operator interfaces. Refer to
Chapter 16, Run-Time Operator Interfaces in the TestStand User Manual
for more information on how to customize a run-time operator interface

TestStand includes run-time operator interfaces in both source and
executable form. Each run-time operator interface is a separate application
program. The operator interfaces differ primarily based on the language
and Application Development Environment (ADE) in which each is
developed. TestStand includes run-time operator interfaces developed in
LabVIEW, LabWindows/CVI, Visual Basic, and Delphi. The TestStand
run-time operator interfaces are less complex than the sequence editor and
are fully customizable.

Loading Sequences
Complete the following steps to load a sequence in a run-time operator
interface:

Note You can use any TestStand operator interface for this tutorial session. If you use the
LabVIEW operator interface and you are using a version of LabVIEW more recent than
5.1, you should first mass compile the VIs in the TestStand installation directory. The
screen shots in this session show the LabWindows/CVI operator interface.

1. Launch the LabWindows/CVI Operator interface from the Windows
taskbar by selecting Start»Programs»National Instruments
TestStand»Operator Interfaces»LabWindows-CVI.

After the main window for the operator interface displays, a Login
dialog box appears.

2. Select the administrator user name, leaving the password empty,
and click on the OK button.

Chapter 7 Using Run-Time Operator Interfaces

Getting Started with TestStand 7-2 ni.com

After you login, the operator interface appears as shown in Figure 7-1.

Figure 7-1. LabWindows/CVI Operator Interface

3. Using the mouse, browse through the menu options and notice that the
operator interface menus contain many of the commands available
from the sequence editor.

Like the sequence editor, the run-time operator interfaces allow you
start multiple concurrent executions, set breakpoints, and single-step.
Unlike the sequence editor, however, the run-time operator interfaces
do not allow you to modify sequences, and they do not display
sequence variables, sequence parameters, step properties, and so on.

4. For this exercise, you will not be debugging code modules in
LabWindows/CVI. Verify that the LabWindows/CVI Standard
Prototype Adapter is properly configured to execute code modules in
the same process as the operator interface, as follows:

a. Select Configure»Adapters, which displays the Adapter
Configuration dialog box.

Chapter 7 Using Run-Time Operator Interfaces

© National Instruments Corporation 7-3 Getting Started with TestStand

b. Select the C/CVI Standard Prototype Adapter in the Configurable
Adapters section.

c. Click on the Configure button, which displays the CVI Standard
Adapter Configuration dialog box.

d. Enable the Execute Steps In-Process option.

e. Click on OK, then click on Done to close the configuration dialog
boxes.

5. Select File»Open Sequence File and open the file <TestStand>\
Tutorial\Sample2.seq, which you created in Chapter 3, Editing
Steps in a Sequence. You also can find this file in the <TestStand>\
Tutorial\Solution directory.

After you open the sequence file, the operator interface window
appears as shown in Figure 7-2.

Figure 7-2. Open Sequence in Operator Interface

Chapter 7 Using Run-Time Operator Interfaces

Getting Started with TestStand 7-4 ni.com

The Sequence File, Sequence, and Step Group ring controls specify the
steps that the operator interface displays in the Steps list box control.

6. Select the Setup step group by clicking on the arrow to the right of the
right of the Step Group control to view its steps.

7. Reselect Main to return to the Main step group.

Running and Debugging Sequences
Complete the following steps to run and debug a sequence in a run-time
operator interface:

1. Set a breakpoint on the CPU Test step by clicking on the step and then
selecting Debug»Toggle Breakpoint. Notice that the letter “B”
appears to the left of the step name.

2. Execute the sequence by selecting Execute»Single Pass.

When you start the execution, the operator interface displays the
execution in a separate window.

Chapter 7 Using Run-Time Operator Interfaces

© National Instruments Corporation 7-5 Getting Started with TestStand

3. When the execution displays the Test Simulator dialog box, click on
Done. The execution then pauses at the breakpoint on the CPU Test
step, as shown in Figure 7-3.

Figure 7-3. Paused Execution in Operator Interface

4. Select Debug»Step Into. Notice that the Execution window changes
and displays the steps in the MainSequence sequence of the
SubSequence1.seq sequence file.

5. Single-step a few times by selecting Debug»Step Over.

6. Select Debug»Resume to complete the execution.

All of the single-stepping and stepping into source code modules are
available to you from the operator interface applications.

7. Close the Execution window by selecting File»Close Execution.

Chapter 7 Using Run-Time Operator Interfaces

Getting Started with TestStand 7-6 ni.com

Running Multiple Executions
Complete the following steps to open a new sequence file and start multiple
executions:

1. Select File»Open Sequence File and open the LoopForever.seq
sequence file from the <TestStand>\Tutorial directory. This
sequence contains a series of empty steps that continuously loop back
to the first step.

2. Start an execution by selecting Execute»Run “MainSequence”.

After the new Execution window appears, drag the Execution window
off to the side so you can see the Sequence Display window.

3. Start a second execution by again selecting Execute»Run
“MainSequence” in the Sequence Display window.

If you do not see the Run “MainSequence” command in the menu,
confirm that you have selected the correct window by clicking on its
tab.

4. Create a total of four executions. Each of the executions you start
executes under the main operator interface process.

5. To terminate all the executions you started, select Debug»Terminate
All. The Terminate All command is available from any of the operator
interface windows.

6. Close all the Execution windows by selecting Window»Close All
Completed Executions.

7. Close the main operator interface window by selecting File»Exit.

This concludes this tutorial session. In the next session, you learn how to
use callbacks.

© National Instruments Corporation 8-1 Getting Started with TestStand

8
Using Callbacks

In this chapter, you learn how to customize the execution of a sequence
within TestStand using callbacks. Callbacks are sequences that are used to
handle common tasks such as serial number inquiry or report logging.

All of the default callback sequences that TestStand includes are provided
in source form so that you can edit or replace them to customize TestStand
for your particular application. In this tutorial session, you replace one of
the default TestStand callbacks with your own.

Setting Up the Example
If you did not directly proceed from Chapter 7, Using Run-Time Operator
Interfaces, follow these steps to set up the TestStand sequence editor so you
can complete this tutorial session:

1. If the sequence editor is not running, launch the sequence editor.

2. Close all windows in the sequence editor.

Overriding a Process Model Callback
The TestStand process models contain sequences that define operations
TestStand performs before and after it tests a UUT. If you want to invoke
a sequence in one of the process models, you can run one of the entry point
sequences in the models. Each model uses the default model entry points
Test UUTs and Single Pass, as discussed in Chapter 2, Loading and
Running Sequences, of this manual. The process models contain hooks that
allow you to customize the behavior of a process model for each main
sequence that uses it without forcing you to edit the process model directly.
These hooks are in the form of sequences and are called model callbacks.

For example, the TestStand process models define a TestReport callback
that generates the test report for each UUT. Normally, the TestReport
callback in the process model files is sufficient because it handles many
types of test results. The sequence developer can, however, override the
default TestReport callback by defining a different TestReport

Chapter 8 Using Callbacks

Getting Started with TestStand 8-2 ni.com

callback in a particular client sequence file. To alter the behavior of the
process models for all sequences, you can modify the process models or
replace the models entirely.

Execution entry points in process models use callbacks to invoke the
main sequence in the client sequence file. Each client sequence file must
define a sequence by the name of MainSequence. The process models
contain a MainSequence callback that is merely a place holder. The
MainSequence in the client sequence file overrides the MainSequence
place holder in a model file.

Chapter 8 Using Callbacks

© National Instruments Corporation 8-3 Getting Started with TestStand

Figure 8-1 shows the callbacks that the default TestStand process model,
SequentialModel.seq, calls and the order in which TestStand executes
the callbacks within the Test UUT execution entry point.

Figure 8-1. TestStand Sequential Model Callbacks

Test UUTs Entry Point

Call PreUUTLoop

Call ConfigureReportOptions

Call PreUUT

Call MainSequence

Call PostUUT

Call TestReport

Call LogToDatabase

Call PostUUTLoop

More
UUTs?

Yes

No

Process Model Callback Sequences

No Action (Place Holder)

No Action (Place Holder)

Display UUT Serial Number Dialog

Run the Main Sequence
from the Selected File

Display Pass/Fail/Error/Terminated
Banners

Generate Report
from Main Sequence Results

No Action (Place Holder)

Log Main Sequence Results
to Database

Chapter 8 Using Callbacks

Getting Started with TestStand 8-4 ni.com

Follow these steps to add a PreUUTLoop callback that displays a message
popup prompt:

1. Open <TestStand>\Components\NI\Models\
TestStandModelSequentialModel.seq. You also can find this
file in the <TestStand>\Tutorial\Solution directory. This file is
the default process model TestStand uses to execute sequences.

2. Select the sequence TestUUTs from the View selector ring. This
sequence is the Test UUTs entry point that TestStand executes when
you select Execute»Test UUTs. Notice the callback sequences that
the Test UUTs sequence calls, such as PreUUTLoop Callback,
PreUUT Callback, MainSequence Callback, and PostUUTLoop
Callback, shown in Figure 8-2.

Figure 8-2. Test UUTs Sequence

Chapter 8 Using Callbacks

© National Instruments Corporation 8-5 Getting Started with TestStand

3. Right click on the PreUUT Callback step and select Open Sequence
from the context menu. The PreUUT Callback sequence has two steps:
Identify UUT and Set Serial Number.

4. Right click on the Identify UUT step and select Run Selected Steps
from the context menu. A familiar-looking dialog box should appear.

This step displays the UUT Information dialog box when you execute
a sequence using the Test UUT entry point. If you wanted to change
the way in which TestStand obtained a UUT serial number, such as
reading it from a bar code, you would replace this callback with
your own.

5. Click on OK on the UUT Information dialog box.

6. Close the execution window.

7. Select Test UUTs again from the View selector ring.

8. Right click on the PreUUTLoop Callback step and select Open
Sequence from the context menu. Notice that this callback is empty.
The empty sequence is a place holder, so that if you want to add steps
that execute before the UUT loop, you can create them in this callback.

9. Close the SequentialModel.seq sequence file window, and do not
save any changes if the sequence editor prompts you to.

You override the PreUUTLoop Callback step with your own callback
sequence.

10. Open the file <TestStand>\Tutorial\Sample4.seq, which you
created in Chapter 5, Using Variables and Properties. You also can
find this file in the <TestStand>\Tutorial\Solution directory.

Chapter 8 Using Callbacks

Getting Started with TestStand 8-6 ni.com

11. Select Edit»Sequence File Callbacks to display the Sample4.seq
Callbacks dialog box, shown in Figure 8-3.

Figure 8-3. Adding Callbacks to a Sequence

12. Select the PreUUTLoop callback name.

13. Click on the Add button.

Notice that the value in the Present column changes from no to yes.
When clicking on the Add button, the sequence editor creates a new
empty callback sequence to your sequence file. Now, when you start an
execution using a model entry point, TestStand calls the callback in
your sequence file instead of the sequence in the
SequentialModel.seq process model.

14. Click on OK to close the callbacks dialog box.

15. Select All Sequences in the View selector ring of the sequence file
window. Notice that the sequence file now contains two sequences:
MainSequence and PreUUTLoop.

16. Right click on the PreUUTLoop sequence and select View Contents
from the context menu.

17. Right click inside the step list pane of the Main tab and select Insert
Step»Message Popup from the context menu.

18. Rename the new step Pre UUT Message.

19. Right click on the Pre UUT Message step and select Edit Message
Settings from the context menu.

Chapter 8 Using Callbacks

© National Instruments Corporation 8-7 Getting Started with TestStand

20. In the Title Expression control, enter the literal string "Pre UUT Loop
Callback Message". You must enclose string literals you enter in
any expression field in double quotation marks (").

21. In the Message Expression, enter the literal string "Now in the Pre
UUT Loop Callback".

22. Click on OK to close the Edit Message Settings dialog box.

23. Save the sequence by selecting File»Save As. Save the sequence as
Sample9.seq in the TestStand\Tutorial directory.

24. Execute the sequence by selecting Execute»Test UUTs. Notice that
the Pre UUT Loop Callback Message dialog box is the first prompt
TestStand displays.

25. Click on OK to close the dialog box. TestStand now displays the UUT
Information dialog box from the PreUUT Callback sequence in the
SequentialModel.seq process model.

26. Enter a serial number and click on OK.

27. Run through several iterations of the sequence.

28. Click on Stop in the UUT Information dialog box.

Notice that TestStand displays only the Pre UUT Loop Callback
Message dialog box once at the very beginning of the execution. The
reason is that, as seen in Figure 8-1, the PreUUTLoop Callback is
executed before the loop, while the PreUUT Callback is executed
within the loop.

29. Close all windows in the sequence editor.

You can make modifications similar to those in this example to the other
TestStand process models, ParallelModel.seq and BatchModel.seq.
These models are discussed in Chapter 2, Loading and Running Sequences.
For more information about the process models, callbacks, and modifying
callbacks, refer to Chapter 1, TestStand Architecture Overview, Chapter 3,
Configuring and Customizing TestStand, and Chapter 14, Process Models,
in the TestStand User Manual.

This concludes this session of the tutorial. In the next session, you learn
how to add users and configure user privileges in TestStand.

© National Instruments Corporation 9-1 Getting Started with TestStand

9
Adding Users and Setting
Privileges

This chapter discusses how to use the TestStand User Manager, and how
you can add new users and change their privileges.

Setting Up the Example
If you did not directly proceed from Chapter 8, Using Callbacks, close all
windows in the sequence editor so you can complete this tutorial session.

Using the User Manager
The TestStand Sequence Editor includes a User Manager for adding and
removing users, and for managing the privileges of each user.

Note The TestStand User Manager is designed to help you implement policies and
procedures concerning the use of your test station. It is not a security system and it does
not inhibit or control the operating system or third party applications. You must use the
system level security features provided by your operating system to secure your test station
computer against malicious use.

In this exercise, you learn how to view current users and add new ones.

1. Launch the User Manager window by selecting View»User Manager.
The left pane shows all of the users configured on this station. Expand
the administrator tree node to display the hierarchy of properties
associated with this user. The Privileges node contains settings for
all actions a user can perform, such as executing sequences, debugging
sequences, or adding new users.

When you highlight a node in the tree view, the corresponding property
values under the node appear in the list pane on the right. Notice that
all the property values for the privileges under the administrator user
are True.

Chapter 9 Adding Users and Setting Privileges

Getting Started with TestStand 9-2 ni.com

The privileges are organized in hierarchical groups. Each privilege
group has a Boolean subproperty named GrantAll. A user has a
privilege if you set the property of the privilege to True. Alternatively,
you can set the GrantAll property of a privilege group to specify
whether a user has all privileges within a privilege group, regardless of
the property value of the individual privileges.

Note The property User.Privileges.GrantAll applies to all privilege groups. If this
property is set to True, the user has all privileges. This property must be set to False to
honor privilege settings within each privilege group.

You can grant privileges in several different ways. The following
example demonstrates one way that a privilege can be granted. A user
has the privilege to terminate an execution if one of the following set
of conditions is met.

• User.Privileges.GrantAll is set to True. This also grants
rights to all other privileges.

• User.Privileges.GrantAll is set to False and
User.Privileges.Operate.GrantAll is set to True. This
also grants rights to other privileges of the Operate privilege
group.

• User.Privileges.GrantAll and
User.Privileges.Operate.GrantAll are set to False and
User.Privilege.Operate.Terminate is set to True. This
only ensures that a user has the privilege to terminate an
execution.

Chapter 9 Adding Users and Setting Privileges

© National Instruments Corporation 9-3 Getting Started with TestStand

Figure 9-1 shows the expanded tree view for the properties under the
administrator user.

Figure 9-1. User Manager Window

2. Add a new user as follows:

a. Click on the User List node in the tree view, which lists the
administrator user in the right pane.

b. Right click in the right pane and select Insert User from the
context menu, which displays the New User dialog box.

c. Fill in the User Name and Full Name controls with your name.

d. Type your password into the Password and Confirm Password
controls.

Chapter 9 Adding Users and Setting Privileges

Getting Started with TestStand 9-4 ni.com

Figure 9-2 shows an example of a completed New User
dialog box.

Figure 9-2. New User Dialog Box

e. For the User Profile control, select Operator.

User profiles define an initial set of privilege settings to give the
new user. By default, the Operator profile grants a user the
privilege to execute, terminate and abort sequences, but does not
grant the privilege to create or debug sequences. TestStand
provides four user profiles by default: Operator, Technician,
Developer, and Administrator.

f. Click on OK to close the New User dialog box.

In addition to adding new users, the User Manager allows you to
modify the default profiles and to create new profiles that define a
combination of privileges appropriate for your test station.

3. Create a new profile as follows:

a. Click on the Profiles tab of the User Manager window. In the list
pane you should see the four default profiles.

b. Click on the Profiles node in the tree view, which lists the
currently defined profiles in the right list pane.

c. Right click on the Operator profile in the right pane and
select Copy from the context menu.

d. Right click in the right pane and select Paste.

Chapter 9 Adding Users and Setting Privileges

© National Instruments Corporation 9-5 Getting Started with TestStand

e. Rename the new profile Senior Operator. The new profile is
identical to the Operator profile.

Note If the Senior Operator profile already exists, the paste operation appends an
underscore and a unique number on the end of the name.

If you make changes to the values in a profile, your changes do not affect the privileges for
users that already exist in the user list. After you create a user, you must modify privileges
individually. You cannot modify privileges for existing users by changing user profiles.

4. Modify the default privileges for this new profile, as follows:

a. Select the new Senior Operator node in the tree view and expand
its privilege settings.

b. Select the Debug node in the tree view, as shown in Figure 9-3.

Figure 9-3. Configure Privileges in New Profile

Debug is a Container property, which contains Boolean
subproperties. The values all the subproperties under Debug are
False.

You can set the value of each privilege in the right pane by right
clicking on an item and selecting Properties from the context
menu.

You can override the privileges in a privilege group and grant a
user access to all privileges in a group by setting the value of the
GrantAll property in the group to True.

Chapter 9 Adding Users and Setting Privileges

Getting Started with TestStand 9-6 ni.com

Set the SinglePass property under the Debug group to True for
the Senior Operator profile as follows:

a. Double-click on the Single Pass name in the right pane.
The Boolean Properties dialog box appears.

b. Change the value to True.

c. Click on OK to close the dialog box.

5. Add a new user using the Senior Operator profile, as follows:

a. Click on the User List tab.

b. Right click in the right pane and select Insert User from the
context menu.

c. Enter the information in the New User dialog box as in the
previous step, this time using a different user name.

d. Select the Senior Operator profile.

e. Click on OK to close the New User dialog box.

6. Select File»Login. The two new users you just added now appear in
addition to the administrator user name.

7. Select the user you created with the Senior Operator profile.

8. Enter the appropriate password.

9. Click on OK.

10. Open Sample1.seq from the TestStand\Tutorial Directory.

11. Open the Execute menu. Notice that the Single Pass menu is
selectable, but the command Run MainSequence is grayed out
because you no longer have the privilege to execute sequences without
a model entry point.

12. Try to right click in a sequence view to insert a new step, and notice
that the insert menu command is also grayed out because your
privileges have changed.

13. Close all of the windows in the sequence editor.

14. Select File»Login.

15. Log in as the administrator. The password for the Administrator is
an empty string.

You can add and remove users programatically using the TestStand API.
Theshippingexample,<TestStand>\Example\CreateDeleteUsers\
CreateDeleteUsers.seq, demonstrates how to add and remove users.

This concludes this session of the tutorial. In the next session, you learn
how to use the TestStand ActiveX API in code modules.

© National Instruments Corporation 10-1 Getting Started with TestStand

10
Using ActiveX in Code Modules

This chapter teaches you how to use ActiveX from within a code module
in TestStand. If you do not use LabVIEW or LabWindows/CVI, you can
skip this chapter and proceed to Chapter 11, Additional Development
Features.

TestStand gives you various places in which you can store data values.
These places are called variables and properties.

As discussed in Chapter 5, Using Variables and Properties, variables are
properties that you can freely create in certain contexts. You can have
variables that are global to a sequence file or local to a particular sequence.
You can also have station global variables. The values of station global
variables are persistent across different executions and even across different
invocations of the sequence editor or run-time operator interfaces. The
TestStand engine maintains the value of station global variables in a file on
the run-time computer.

Each step in a sequence can have properties. For example, a step might have
an integer error code property. The type of a step determines the set of
properties it has. For example, the Numeric Limits Test step contains
properties for the comparison type and the high and low limit values.

You can use TestStand variables to share data among tests you write in
different programming languages even if they do not have compatible data
representations. You can pass values that you store in variables and
properties to code modules. Also, you can use the TestStand ActiveX API
to access variable and property values directly from code modules. When
executing sequences, TestStand maintains a sequence context that contains
references to all global variables, all local variables, and step properties in
active sequences. The contents of the sequence context change depending
on the currently executing sequence and step. If you pass a sequence
context object reference to the code module, you can use the TestStand
ActiveX API to access the variables and properties in the sequence context.

In this session, you learn how create code modules in the LabVIEW and
LabWindows/CVI development environments that use the ActiveX API to
share data with TestStand.

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-2 ni.com

Using ActiveX in LabVIEW Test Virtual Instruments
In this exercise, you create a new sequence with two steps that call a
LabVIEW VI. The first step generates an array of data and stores it in a
TestStand variable. The second step plots the data stored in the variable.
This session of the tutorial assumes a general familiarity with the
LabVIEW development environment. If you are not using LabVIEW, but
you do use LabWindows/CVI, you can skip this section and proceed to the
Using ActiveX in LabWindows/CVI Code Modules section in this chapter.

Note Verify that you are using the appropriate version of LabVIEW with TestStand. Refer
to the readme.txt file in the TestStand\Doc directory for more details.

Setting Up the Example
Close all windows in the sequence editor so you can complete this tutorial
session.

Creating the Sequence and Virtual Instrument Tests
In this exercise, you create a new sequence in the sequence editor.

1. Open a new sequence by selecting File»New Sequence File in the
menu.

2. Save the sequence by selecting File»Save As. Save the sequence as
Sample10.seq in the <TestStand>\Tutorial directory. By
saving the sequence file now, you can specify relative paths to code
modules instead of absolute paths.

3. Click on the Locals tab of the Sequence File window.

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-3 Getting Started with TestStand

4. Right click in the right pane and insert a numeric array variable,
as shown in Figure 10-1.

Figure 10-1. Insert Locals Array of Numeric

When you make this selection, the sequence editor displays the Array
Bounds dialog box, shown in Figure 10-2.

Figure 10-2. Array Bounds Dialog Box

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-4 ni.com

5. Enter a value of 1023 for the Upper Bounds control as shown in
Figure 10-2.

6. Click on OK to close the dialog box.

7. Right click on the new variable and select Rename from the
context menu.

8. Rename the variable Arraydata.

9. Click on the Main tab of the Sequence File window. Select LabVIEW
Standard Prototype Adapter in the Adapter Selector Ring control.

10. Right click in the step list and select Insert Step»Action to insert a
new Action step.

11. Rename the step Get Array Data From LabVIEW.

12. Right click on the Get Array Data From LabVIEW step and select
Specify Module in the context menu.

13. Using the Browse button on the Edit LabVIEW VI Call dialog box,
select the file GenerateWaveform.vi in the TestStand\Tutorial
directory.

14. On the Edit LabVIEW VI Call dialog box, enable the options
Sequence Context ActiveX Pointer and Show VI Front Panel When
Called.

15. Now that you have specified the VI, click on the Edit Code button on
the Edit LabVIEW VI Call dialog box to open the VI in LabVIEW.

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-5 Getting Started with TestStand

Figure 10-3 shows the front panel of the GenerateWaveform.vi.
This VI generates a waveform based on the inputs from the front panel.

Figure 10-3. GenerateWaveform.vi Front Panel

16. Save the VI file as GenerateTestStandWaveform.vi in the
TestStand\Tutorial directory by selecting the File»Save As in
LabVIEW.

You are saving the file in this manner to preserve the original VI for the
next person that uses this tutorial. Later, you change the specified
module in the TestStand step to point to this new VI.

When you install TestStand, the installation adds a TestStand.LLB
to the LabVIEW\User.lib directory. This VI library contains the
TestStand LabVIEW Standard Prototype controls, and additional VIs
to assist you when calling the TestStand ActiveX automation server.

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-6 ni.com

Figure 10-4 shows the TestStand control palette.

Figure 10-4. TestStand Control Palette

All test VIs that the LabVIEW Standard Prototype Adapter calls must
contain Test Data and error out controls. Test VIs also might contain
the Sequence Context, Input Buffer, and Invocation Info controls.

17. Add additional controls to the front panel so that the LabVIEW
Standard Prototype Adapter can call the VI from TestStand, as follows:

a. Drag the Sequence Context and Test Data controls from the
TestStand control palette to the VI front panel.

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-7 Getting Started with TestStand

b. Wire the two new controls to the terminal connector in the upper
right corner of the front panel window, as shown in Figure 10-5.
Wire the Sequence Context to the upper left position. Wire the
Test Data cluster to the upper right position. The position of the
connections is not rigidly enforced; however, by convention, you
should wire controls to the left side of the connector pane and
indicators to the right side of the connector pane. If you do not
wire the controls to the terminal, TestStand cannot pass data to the
controls.

Figure 10-5. GenerateTestStandWaveform.vi Control Panel

c. The LabVIEW Standard Prototype Adapter does not allow you to
pass array data to the Test VI directly through a VI terminal.
Instead, the test VI must give the TestStand engine the array data
using the TestStand API.

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-8 ni.com

18. Use functions in the TestStand function palette to assign the array data
to a TestStand variable using the sequence context refnum, as follows:

a. Open the block diagram for the test VI as shown in Figure 10-6.

Note The three VIs, InitializeTerminationMonitor.vi,
GetMonitorStatus.vi, and CloseTerminationMonitor.vi, monitor the status of
the TestStand execution under which the step module is called. When performing a task
inside of a step, such as displaying a dialog box, you should monitor the state of the current
TestStand execution. If the execution is terminating or aborting, you should abort the task
you are performing within the step module.

Figure 10-6. GenerateWaveform.vi Block Diagram

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-9 Getting Started with TestStand

You can access the TestStand function palette from the user
libraries in LabVIEW as shown in Figure 10-7.

Figure 10-7. TestStand Function Palette

b. Using the TestStand VIs Set Property Value (Numeric
Array).vi and Create Test Data Cluster.vi, update the
block diagram as shown in Figure 10-8.

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-10 ni.com

Figure 10-8. GenerateTestStandWaveform.vi Block Diagram

Note The TestStand function palette contains only wrapper VIs for the most commonly
used TestStand ActiveX API methods and properties. Refer to the TestStand Programmer
Help for more details on the entire ActiveX API.

c. Save your changes to the test VI by selecting File»Save in
LabVIEW. Leave the test VI open in LabVIEW.

19. Return to the Edit LabVIEW VI Call dialog box in the sequence editor.

20. Re-specify the VI module for the step by clicking on the Browse
button and selecting the file GenerateTestStandWaveform.vi in
the TestStand\Tutorial directory.

21. Click on OK to close the Edit LabVIEW VI Call dialog box.

22. Create a second step that plots the data stored in the TestStand variable,
as follows:

a. Right click in the step list below the Get Array Data From
LabVIEW step and select Insert Step»Action to insert a new
Action step.

b. Rename the new step Display Array Data in LabVIEW.

c. Right click on the new step and select the Specify Module
command in the context menu to display the Edit LabVIEW VI
Call dialog box.

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-11 Getting Started with TestStand

d. Enter the name DisplayWaveform.vi for the VI Pathname
control.

e. Enable the options Sequence Context ActiveX Pointer and Show
VI Front Panel When Called.

f. Click on the Create Code button to create and open the test VI in
LabVIEW. The sequence editor prompts you to choose the
directory in which to create the new VI.

g. Select the TestStand\Tutorial directory. Notice that the new
VI already contains the Sequence Context, Test Data, and error out
controls.

h. Add a Waveform Graph control and a Dialog button to the VI front
panel, as shown in Figure 10-9.

Figure 10-9. DisplayTestStandWaveform.vi Front Panel

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-12 ni.com

i. Using the TestStand VIs Get Property Value (Numeric
Array).vi, Create Test Data Cluster.vi,
InitializeTerminationMonitor.vi,
GetMonitorStatus.vi, and CloseTermination

Monitor.vi, update the block diagram as shown in
Figure 10-10.

Figure 10-10. DisplayTestStandWaveform.vi Block Diagram

j. Save your changes to the test VI by selecting File»Save in
LabVIEW. Leave the test VI open in LabVIEW.

23. Return to the Edit LabVIEW VI Call dialog box in the sequence editor.

24. Click on OK to close the dialog box.

25. From the main sequence editor window, select File»Save to save the
sequence file changes.

Running the Sequence
Run the sequence to verify that the code module properly generates and
displays the array data.

1. Execute the sequence by selecting Execute»Run MainSequence.

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-13 Getting Started with TestStand

2. When the front panel for the two VI tests appears, click on the Return
button to continue. Notice that the second VI front panel displays the
waveform you specified on the first front panel.

3. Close the Execution window after the execution completes.

4. Rerun the sequence and view the data stored in the TestStand array
variable as follows:

a. Place a breakpoint on the Display Array Data in LabVIEW step by
right clicking on the step in the Sequence File window and
selecting Toggle Breakpoint from the context menu.

b. Execute the sequence again by selecting Execute»Run
MainSequence.

c. When the front panel for the first VI test appears, click on the
Return button to continue.

d. When the execution stops at the breakpoint, click on the Context
tab and select the Locals.Arraydata variable, as shown in
Figure 10-11. Notice the non-zero values for the contents of the
array.

Figure 10-11. Locals.Arraydata

5. Select Debug»Resume to continue.

6. When the front panel for the second VI test appears, click on the
Return button to finish the execution.

7. Close the Execution window after the execution completes.

8. Close all windows in the sequence editor.

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-14 ni.com

If you develop code modules in LabWindows/CVI, proceed to the next
section in this chapter and complete the Setting Up the Example section.
Otherwise, go directly to Chapter 11, Additional Development Features,
in this manual.

Using ActiveX in LabWindows/CVI Code Modules
In this exercise, you create a new sequence with two LabWindows/CVI
steps that generate an array of data, and plot the data. This session of the
tutorial assumes a general familiarity with the LabWindows/CVI
development environment.

Note Verify that you are using the appropriate version of LabWindows/CVI with
TestStand. Refer to the readme.txt file in the TestStand\Doc directory for more
details.

Setting Up the Example
Close all windows in the sequence editor so you can complete this tutorial
session.

Creating the Sequence and Tests
In this exercise, you create a new sequence in the sequence editor.

1. Open a new sequence by selecting File»New Sequence File.

2. Save the sequence by selecting File»Save As. Save the sequence as
Sample11.seq in the TestStand\Tutorial directory. By saving
the sequence file now, you can enter relative paths to code modules
instead of absolute paths.

3. Click on the Locals tab of the Sequence File window.

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-15 Getting Started with TestStand

4. Right click in the right pane and insert a numeric array variable,
as shown in Figure 10-12.

Figure 10-12. Insert Locals Array of Numeric

When you make this selection, the sequence editor displays the Array
Bounds dialog box.

5. Enter a value of 1023 for the Upper Bounds control, as shown in
Figure 10-13.

Figure 10-13. Array Bounds Dialog Box

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-16 ni.com

6. Click on OK to close the dialog box.

7. Right click on the variable and select Rename from the context menu.

8. Rename the variable Arraydata.

9. Click on the Main tab of the Sequence File window. Select C/CVI
Standard Prototype Adapter in the Adapter Selector Ring control.

10. Right click in the step list and select Insert Step»Action to insert a
new Action step.

11. Rename the step Get Array Data From CVI.

12. Right click on the new step and select the Specify Module command
in the context menu.

13. On the Module tab in the Module Type ring control, select Dynamic
Link Library (*.dll).

14. For the Module Pathname control, enter the name
UsingActiveXInCVI.DLL.

15. For the Function Name control, enter the name
GenerateTestStandWaveform.

16. Enable the Pass Sequence Context option.

17. On the Source Code tab, click on the Create Code button. When
the adapter prompts you for a pathname for the project, enter
UsingActiveXInCVI.prj in the TestStand\Tutorial directory.

18. When the dialog box prompts you for a pathname for the source file,
enter the name UsingActiveXInCVI.c.

After you enter the name, TestStand does the following:

1. Launches an external instance of LabWindows/CVI

2. Creates a new project file in LabWindows/CVI

3. Creates the source file

4. Adds the source file and the TestStand support instrument drivers
to the project

5. Generates a template GenerateTestStandWaveform function
in the source file

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-17 Getting Started with TestStand

Figure 10-14 shows the generated function in the source file.

Figure 10-14. Generated GenerateTestStandWaveform Source

Note If someone else previously completed this session of the tutorial, the project
and source files might already exist. Replace any existing copies of the files. When
LabWindows/CVI prompts you to replace the existing function, click on the Replace
button to continue with this tutorial session.

19. Update the GenerateTestStandWaveform function to prompt an
operator to enter the number of sine cycles to initialize the array with.
Update the source code for the function as follows. Changed lines
appear in bold.

void __declspec(dllexport) TX_TEST

GenerateTestStandWaveform(tTestData *testData,

tTestError *testError)

{

int error = 0;

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-18 ni.com

ErrMsg errMsg = {"Error occurred generating

waveform"};

ERRORINFO errorInfo;

int i;

double cycles = 2.0;

char buffer[32];

double Arraydata[1024];

VARIANT variantData;

// Prompt for number of cycles

PromptPopup ("Frequency", "Please input number of

cycles for the array?", buffer, 32);

sscanf(buffer, "%lf", &cycles);

// Initialize C array

for (i=0; i<1024; i++)

Arraydata[i] = sin((2*3.14) * i * cycles /

1024);

// Copy C array to VARIANT

CA_VariantSet1DArray (&variantData, CAVT_DOUBLE,

1024, Arraydata);

// The following code shows how to access a

// property or variable via the TestStand

// ActiveX API

tsErrChk (TS_PropertySetValVariant

(testData->seqContextCVI, &errorInfo,

"Locals.Arraydata", 0, variantData));

Error:

// FREE RESOURCES

// If an error occurred, set the error flag to

// cause a run-time error in TestStand.

if (error < 0)

{

testError->errorFlag = TRUE;

// OPTIONALLY SET THE ERROR CODE AND STRING

testError->errorCode = error;

testData->replaceStringFuncPtr(&testError->

errorMessage, errMsg);

}

return;

}

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-19 Getting Started with TestStand

20. Compile the source code by selecting Build»Compile File to verify
that your changes are correct.

21. Save the source code after you successfully compile.

22. Add another function that gets the array data from the TestStand
engine and plots the data. Type the following additional function into
the source file.

void __declspec(dllexport) TX_TEST

DisplayTestStandWaveform(CAObjHandle

seqContextCVI)

{

int error = 0;

ErrMsg errMsg = {'\0'};

ERRORINFO errorInfo;

int elements = 0;

double *Arraydata = NULL;

VARIANT variantData;

// The following code shows how to access a

// property or variable via the TestStand

// ActiveX API

tsErrChk (TS_PropertyGetValVariant

(seqContextCVI, &errorInfo, "Locals.Arraydata",

0, &variantData));

// Copy C array to VARIANT

CA_VariantGet1DArray (&variantData, CAVT_DOUBLE,

&Arraydata, &elements);

WaveformGraphPopup ("Waveform From TestStand",

Arraydata, elements, VAL_DOUBLE, 1.0, 0.0,

0.0, 1.0);

Error:

if (Arraydata)

CA_FreeMemory(Arraydata);

return;

}

23. Compile the source code by selecting Build»Compile File to verify
that your changes are correct.

24. Save the source code after you successfully compile.

25. To build the DLL, select Build»Create Debuggable Dynamic Link
Library in the Project window.

26. After the DLL build is complete, return to the sequence editor.

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-20 ni.com

27. Click on OK to close the Edit C/CVI Module Call dialog box to return
to the Main step group view.

Note If LabWindows/CVI returns a file permission error when creating the DLL, return
to the sequence editor and select the Unload All Modules command from the File menu.
When you make this selection, TestStand unloads all step code modules, which includes
DLLs, VIs and any other modules the adapter loads. Return to LabWindows/CVI and
rebuild the DLL.

28. Select the DLL Flexible Prototype Adapter in the Adapter Selector
Ring control.

29. Right click in the step list below the Get Array Data From CVI step and
select Insert Step»Action to insert a new Action step.

30. Rename the step Display Data In CVI.

31. Right click on the new step and select the Specify Module command
in the context menu.

32. On the Module tab, click on the Browse button next to the DLL
Pathname control.

33. Select the UsingActiveXInCVI.dll that you created.

34. Select the DisplayTestStandWaveform function in the Function
Name ring control. TestStand displays a message saying the function
does not have parameter information in the DLL.

35. Click on the New button to create a parameter for the function.

36. Rename the arg1 parameter seqContextCVI.

37. Select Object in the Category ring control.

38. Select CVI ActiveX Automation Handle in the Object Type ring
control.

39. Enter the expression, ThisContext, in the Value Expression control.

Note The purpose of this session is to demonstrate how to use the sequence context within
a code module. When you use the DLL Flexible Prototype Adapter, you can pass the array
directly to the DLL as a parameter to the function.

40. Click on OK to close the Edit DLL Call dialog box.

41. In the main sequence editor window, select File»Save to save the
sequence file changes.

Chapter 10 Using ActiveX in Code Modules

© National Instruments Corporation 10-21 Getting Started with TestStand

Running the Sequence
In this exercise, you run the sequence to verify that the code module
properly generates and displays the array data.

1. Execute the sequence by selecting Execute»Run MainSequence.

2. Enter a value of 5 for the number of sine cycles to generate for the array
data.

3. Click on the OK button to continue.

4. After the second step displays the graph, click on OK to continue.

5. Close the Execution window after the execution completes.

6. Rerun the sequence execution and view the data stored in the array
variable in TestStand as follows:

a. Place a breakpoint on the Display Data In CVI step by right
clicking on the step in the Sequence File window and selecting
Toggle Breakpoint from the context menu.

b. Execute the sequence again by selecting Execute»Run
MainSequence.

c. Enter a value of 5 for the number cycles to generate in the array.

d. Click on the OK button to continue.

e. When the execution stops at the breakpoint, click on the
Context tab.

Chapter 10 Using ActiveX in Code Modules

Getting Started with TestStand 10-22 ni.com

f. Select the Locals.Arraydata variable as shown in
Figure 10-15. Notice the non-zero values for the contents of
the array.

Figure 10-15. Locals.Arraydata Values

7. Select Debug»Resume.

8. After the graph window appears, click on OK to continue.

9. Close the Execution window after the execution completes.

10. Close all windows in the sequence editor.

This concludes this tutorial session. In the next session, you learn more
advanced features of TestStand to use when developing and debugging
sequences.

© National Instruments Corporation 11-1 Getting Started with TestStand

11
Additional Development
Features

In this chapter, you learn how to use more advanced features available
when developing and debugging sequences. Also, you learn how to
interactively execute steps, and how to dynamically call a sequence
by name.

Setting Up the Example
Close all windows in the sequence editor so you can complete this tutorial
session.

Interactive Execution
In this exercise, you run selected steps from a Sequence File window and
interactively execute steps while paused at a breakpoint during an
execution.

Running Selected Steps as a Separate Execution
In this exercise, you execute selected steps in a Sequence File window.

1. Open Sample1.seq from the TestStand\Tutorial directory.

2. After you open the sequence file, place a breakpoint on the Power On
step by clicking to the left of the step icon or by right clicking on the
step and selecting Toggle Breakpoint from the context menu.

3. Select the Power On, ROM, and ROM Diagnostics steps by holding
down the <Ctrl> key and clicking on each step.

Chapter 11 Additional Development Features

Getting Started with TestStand 11-2 ni.com

4. After you make these selections, the Sequence File window appears,
as shown in Figure 11-1.

Figure 11-1. Selecting Multiple Steps in a Sequence File Window

5. Select Execute»Run Selected Steps. When you make this selection,
TestStand starts a new execution.

When you run selected steps from a Sequence File window, by default
TestStand executes the Setup and Cleanup step groups and the steps in
the Main step group.

6. When the Test Simulator dialog box appears, click on Done to close
the dialog box.

Chapter 11 Additional Development Features

© National Instruments Corporation 11-3 Getting Started with TestStand

7. The execution now enters the breakpoint on the Power On step,
as shown in Figure 11-2.

Figure 11-2. Breakpoint During Interactive Execution

Notice that the pointer for the interactive execution is a narrow arrow
instead of the yellow arrow that the sequence editor uses for a normal
execution.

8. Single-step the execution twice by selecting Debug»Step Over.
Notice that the execution executes only the steps that you previously
selected and that the non-selected step icons are dimmed.

9. Complete the execution by selecting Debug»Resume. Notice that
TestStand ignores the preconditions for the ROM Diagnostics step and
runs the step even though the ROM step passed.

10. Close the Execution window after the execution completes.

11. Repeat steps 3 through 10 but this time select Execute»Run Selected
Steps Using»Single Pass in step 5. TestStand executes your steps
using the process model entry point Single Pass which produces a
UUT report.

Chapter 11 Additional Development Features

Getting Started with TestStand 11-4 ni.com

Running Selected Steps During an Execution
In this exercise, you interactively execute selected steps while paused at a
breakpoint during an execution.

1. Select Execute»Single Pass to start a new execution.

2. When the Test Simulator dialog box appears, select the ROM test
to fail.

3. Click on Done to close the dialog box. The execution now enters the
breakpoint on the Power On step.

4. Using Debug»Step Over, continue the execution until you reach the
RAM Diagnostics step. Notice that the ROM step failed.

5. Place a second breakpoint on the ROM step in the Execution window
by clicking to the left of the step icon or by right clicking on the step
and selecting Toggle Breakpoint from the context menu.

6. Now select the ROM, and ROM Diagnostics steps by holding down
the <Ctrl> key and clicking on each step.

7. Right click on the ROM Diagnostics step and select Loop on Selected
Steps from the context menu, as shown in Figure 11-3.

Figure 11-3. Loop on Selected Steps During Execution

Chapter 11 Additional Development Features

© National Instruments Corporation 11-5 Getting Started with TestStand

8. In the Loop on Selected Steps dialog box, enter the number 100 in the
Loop Count control.

9. Click on OK to close the dialog box. The sequence editor starts an
interactive execution for the selected steps and enters a paused state on
the breakpoint for the ROM step. Notice that the yellow arrow icon is
still on the RAM Diagnostics step and a new narrow arrow icon is now
pointing to the ROM step.

10. Single-step the interactive execution by selecting Debug»Step Over.
Notice that the interactive execution toggles between only the ROM
and the ROM Diagnostics steps.

11. The status of the ROM step does not pass and continues to fail. Rather
than complete the 100 loops of the interactive execution, select
Debug»Terminate Interactive Execution. When you make this
selection, the TestStand returns the execution to a paused state on the
RAM Diagnostics step.

12. Force the execution to continue from a step other than the currently
paused step as follows:

a. Click on the ROM step so that it is the only highlighted step.

b. Right click on the ROM step and select Set Next Step from the
context menu. Notice that the yellow arrow icon moves from the
RAM Diagnostics step to the ROM step.

c. Select Debug»Step Over to single-step once and notice that
the execution executes the ROM step instead of the RAM
Diagnostics step.

13. Complete the execution by selecting Debug»Resume.

When the report file completes, notice that the report contains entries
for each interactively executed step.

14. Close all windows in the sequence editor and do not save any changes
to the sequence file.

Chapter 11 Additional Development Features

Getting Started with TestStand 11-6 ni.com

Calling Sequences Dynamically and Passing
Parameters

In the following exercise, you add a step to a sequence that dynamically
runs one of two sequences.

Adding a Step to Sequence
In this exercise, you open an existing sequence, add steps to prompt the
operator for a CPU type and a number of CPUs to test, and add a step to call
one of two different sequences depending on the type of CPU the user
specifies.

1. Open Sample1.seq from the TestStand\Tutorial directory.

2. Click on the Locals tab of the sequence window.

3. Right click in the right pane and select Insert Local»String from the
context menu.

4. Rename the local variable CPUType.

5. Click on the Main tab in the Sequence File window to display the steps
in the Main step group.

6. Right click on the Power On step and select Insert Step»Message
Popup from the context menu.

7. Rename the new step Select CPU Type.

8. Right click on the new step and select Edit Message Settings from the
context menu.

9. Under the Text and Buttons tab, change the following control values on
the Configure Message Box Step dialog box:

Title Expression "Select CPU"

Message Expression "Please select the CPU Type for

the UUT."

Button 1 "INTEL CPU"

Button 2 "AMD CPU"

Cancel Button None

10. Click on OK to close the Configure Message Box Step dialog box.

11. Select the Options tab and enable the Make Modal option. Enabling
this option prevents the message popup dialog box from being hidden
behind the Sequence Editor window and prevents the user from
interacting with the Sequence Editor until the user closes the message
popup dialog box.

Chapter 11 Additional Development Features

© National Instruments Corporation 11-7 Getting Started with TestStand

12. Right click on the Select CPU Type step and select Properties from
the context menu.

13. Click on the Expressions tab.

14. Enter the following expression in the Post Expression control. You can
click the Browse button next to the Post Expression control and use the
Expression Browser to create this expression. You can also get
descriptions of condition operators such as ?:, in the Expression
Browser.

Locals.CPUType = ((Step.Result.ButtonHit == 2) ?
"AMD" : "INTEL")

This expression assigns the string value "AMD" or "INTEL" to the local
variable, depending on which button the user clicks on.

15. Click on OK to close the properties dialog box.

16. Right click on the Select CPU Type step and select the Insert
Step»Message Popup command from the context menu.

17. Rename the new step Specify Number of CPUs.

18. Right click on the new step and select the Edit Message Settings
command from the context menu.

19. Change the following control values on the Configure Message Box
Step dialog box:

Title Expression "Number of CPUs"

Message Expression "Please select the number of CPUs

installed for the UUT."

Button 1 "1"

Button 2 "2"

Button 3 "3"

Button 4 "4"

Cancel Button None

20. Select the Options tab and enable the Make Modal option.

21. Click on OK to close the Configure Message Box Step dialog box.

22. Right click on the Specify Number of CPUs step and select the Insert
Step»Sequence Call command in the context menu.

23. Rename the step CPU Test.

24. Right click on the new CPU Test step and select Specify Module from
the context menu.

Chapter 11 Additional Development Features

Getting Started with TestStand 11-8 ni.com

25. Enable the Specify Expressions for Pathname and Sequence option.

26. Enter the following values for the File Pathname Expression and
Sequence Expression controls:

File Pathname Expression Locals.CPUType + "Processor.seq"

Sequence Expression "MainSequence"

27. Select the prototype for the sequence call by clicking on the Load
Prototype button.

28. Click on the Browse button in the Load Sequence Prototype
dialog box.

29. Select the AMDProcessor.seq sequence file.

30. Click on OK twice to close both the Select Sequence File and the Load
Sequence Prototype dialog boxes.

Notice that TestStand populates the Parameters section with the
parameter list for the sequence.

31. Click on the CPUsInstalled parameter.

32. Select the Enter Expression option.

33. Enter the following expression into its string control, or click on
Browse and find the property in the Expression Browser dialog box:

RunState.Sequence.Main["Specify Number of CPUs"]
.Result.ButtonHit

Chapter 11 Additional Development Features

© National Instruments Corporation 11-9 Getting Started with TestStand

Figure 11-4 shows the completed Edit Sequence Call dialog box.

Figure 11-4. Dynamically Calling with an Expression

34. Click on OK to close the dialog box.

35. Select File»Save As and save the sequence in the
TestStand\Tutorial directory as Sample12.seq.

Chapter 11 Additional Development Features

Getting Started with TestStand 11-10 ni.com

Figure 11-5 shows the resulting sequence.

Figure 11-5. Dynamically Calling a Sequence

Running a Sequence
Complete the following steps to run a sequence dynamically:

1. Place a breakpoint on the CPU Test step by clicking to the left of the
step icon or by right clicking on the step and selecting Toggle
Breakpoint from the context menu.

2. Select Execute»Single Pass.

3. Click on Done in the Test Simulator prompt.

4. Click on the INTEL CPU button in the Select CPU prompt.

5. Click on the 2 button in the Number of CPUs prompt.

Chapter 11 Additional Development Features

© National Instruments Corporation 11-11 Getting Started with TestStand

6. After the execution pauses at the breakpoint on the CPU Test step,
single-step into the subsequence by selecting Debug»Step Into.
Notice that the Call Stack pane lists INTELProcessor.seq at the
bottom of the sequence call stack, as shown in Figure 11-6.

Figure 11-6. INTELProcessor.seq in the Call Stack Pane

Chapter 11 Additional Development Features

Getting Started with TestStand 11-12 ni.com

7. Click on the Context tab and notice the values of the two parameters
for the sequence, as shown in Figure 11-7.

Figure 11-7. Sequence Parameters in the Context Tab

The value of the CPUsInstalled parameter is equal to the value on
the button you clicked on the Specify Number of CPUs prompt. Notice
that MainSequence in the INTELProcessor.seq sequence file also
requires a ModelName parameter. The sequence call step you created
did not specify this parameter, so the engine initializes the parameter
value to its default value.

8. Complete the execution by selecting Debug»Resume.

9. When the report file completes, review the report, but do not close the
Execution window.

10. Restart the execution by selecting Execute»Restart.

11. Click on Done in the Test Simulator prompt.

12. Click on the AMD CPU button in the Select CPU prompt.

13. Click on the 3 button in the Number of CPUs prompt.

14. When the execution pauses at the breakpoint on the CPU Test step,
step into the subsequence by selecting Debug»Step Into.

Notice that the Call Stack pane lists AMDProcessor.seq at the
bottom of the call stack.

Chapter 11 Additional Development Features

© National Instruments Corporation 11-13 Getting Started with TestStand

15. Complete the execution by selecting Debug»Resume, and review the
report.

16. Close the Execution window and the Sequence File window.

This concludes this tutorial session. In the next session, you learn how to
customize the reports that TestStand generates.

© National Instruments Corporation 12-1 Getting Started with TestStand

12
Customizing the Report

In this chapter, you learn how to customize report generation within
TestStand. Through the callback structure examined in Chapter 8, Using
Callbacks, you can create your own Test Report Callback routine to
develop reports in any format. Because changing report generation is so
common, TestStand provides several options to configure the format of the
test report without creating your own callback. You examine each of these
options in this chapter.

Setting Up the Example
Close all windows in the sequence editor so you can complete this tutorial
session.

Configuring Test Report Options

1. Open Sample1.seq from the TestStand\Tutorial directory.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-2 ni.com

2. Select Configure»Report Options. The Report Settings dialog box
appears, as shown in Figure 12-1.

Figure 12-1. UUT Report Setting

3. Configure the test report options as shown in Figure 12-1.

a. Enable the Include Step Results option and configure the
following Step Result settings:

• Set the Result Filtering Expression to
Exclude/Passed/Done/Skipped by clicking on the arrow to the
right of the control.

The Result Filtering Expression determines the conditions
that must be met before the results are logged to the test
report. In this example, you configure TestStand to record
only the results of the steps that do not pass or steps that
complete without any status. TestStand evaluates the

Chapter 12 Customizing the Report

© National Instruments Corporation 12-3 Getting Started with TestStand

expression at run-time when generating the report. The
results of each step are only logged to the test report if the
expression is True.

• Enable the Include Test Limits option.

• Enable the Include Measurements option.

In this example, when a measurement is an array, you are
configuring TestStand to include the array as a table. You can
also include it as a graph if you are producing Web page
reports.

b. Enable the Include Execution Times option.

c. Click on the Edit Format button to display the Numeric Format
dialog box. By default, TestStand configures the numeric format
to report a float with 13 digits of precision. Change the Number of
Fractional Digits to 2 and click the OK button.

d. Set the Report Format control to ASCII Text File. This setting
creates the test report in a standard ASCII format.

4. Click on the Report File Pathname tab.

This tab allows you to configure the name and path for the test report
file. You can, for example, create a new file for each UUT, or include
the time and date in the name of the report file.

5. Leave the Report File Pathname tab options as they are and click on
OK to close the dialog box.

6. Execute the sequence by selecting Execute»Test UUTs.

7. Run through several iterations of the sequence and select different
components, other than the video and CPU test, to fail.

8. Click on Stop in the UUT Information dialog box to stop the sequence
execution.

9. Examine the test report and notice that there is a Failure Chain for
UUTs that fail. The failure chain shows the step whose failure causes
the UUT to fail. The failure chain also shows the sequence call steps
through which the execution reaches the failing step. Figure 12-2
shows a failure chain in which the failure of the RAM step in
Sample1.seq causes the UUT to fail. Also, notice that the only step
results that appear in the report are for steps that failed. The report
format should appear similar to Figure 12-2.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-4 ni.com

Figure 12-2. Test Report in Text Format

10. Close the Execution window.

11. Select Configure»Report Options.

12. Change the Report Format Tag to Web Page.

13. Click on OK to close the dialog box.

14. Execute the sequence by selecting Execute»Test UUTs.

15. Run through several iterations of the sequence and select different
tests, other than the Video and CPU test, to fail.

16. Click on Stop in the UUT Information dialog box to stop the
sequence.

17. Examine the test report and notice that in the HTML reports, each step
name in the failure chain is a hyperlink to the section of the report that
displays the result for the step. The report format should appear as
shown in Figure 12-3.

Chapter 12 Customizing the Report

© National Instruments Corporation 12-5 Getting Started with TestStand

Figure 12-3. Test Report in HTML Format

18. Close the Execution window.

19. Select Configure»Report Options.

20. Set the Report Format control back to ASCII Text File and set the
Result Filtering Expression back to True by selecting the All Results
option in the arrow pulldown list.

21. Click on OK to close the Report Options dialog box.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-6 ni.com

Using External Report Viewers
You might want to view the test report in external applications more suited
for displaying and editing text, such as Microsoft Word or Microsoft Excel.
TestStand refers to these external applications as external report viewers.

By default the Windows 2000/NT/Me/9x operating systems can associate
an application with a file extension. For example, by default, Microsoft
associates the .doc file extension with the Microsoft WordPad application.
If you install Microsoft Word on your system, the Word installer replaces
the WordPad file type association with itself for the .doc file type.

1. Change the file extension of your report by completing the following
steps:

a. Select Configure»Report Options.

b. Select the Report File Pathname tab.

c. Disable the Use Standard Extension for Report Format option.

d. Enter doc in the Extension string control. TestStand will now
create test reports with a .doc file extension.

e. Click OK to close the Report Options dialog box.

2. Configure TestStand to automatically launch the external viewer
associated with the .doc file extension.

a. Select Configure»External Viewers.

b. Enable the Automatically Launch Default External Viewer
checkbox.

c. Click OK to close the Configure External Viewer dialog box.

3. Execute the sequence by selecting Execute»Test UUTs.

4. Run through several iterations of the sequence.

5. Select Stop in the UUT Information dialog box to stop the execution.

TestStand now generates the text report and launches WordPad or
Microsoft Word to display the test report.

6. Examine the test report and close the external report viewing
application.

7. Change the report settings back as follows:

a. Select Configure»Report Options.

b. Change the Report Format Tag to Web Page on the Contents tab.

Chapter 12 Customizing the Report

© National Instruments Corporation 12-7 Getting Started with TestStand

c. Enable the Use Standard Extension for Report Format option on
the Report File Pathname tab.

d. Click on OK to close the dialog box.

8. Change the external viewer settings back as follows:

a. Select Configure»External Viewers.

b. Disable the Automatically Launch Default External Viewer dialog
box.

c. Click OK to close the Configure External Viewer dialog box.

If you want to define a file association independent of the operating system,
you can configure this using Configure»External Viewers. Refer to
Chapter 4, Sequence Editor Menu Bar, in the TestStand User Manual for
more information on External Viewers.

Adding New Step Properties to a Report
Step types define a list of properties and behaviors for each step of that
type. TestStand contains a set of predefined step types. If the functionality
of these step types does not meet your needs, you can design ones that do.

In this exercise you create a new step type with a custom numeric array
property and include this property in the report.

Setting Up the Example
Close all windows in the sequence editor so you can complete this example.

Creating a Step Type
1. Open a new sequence by selecting File»New Sequence File.

2. Save the sequence by selecting File»Save As. Save the sequence as
Sample13.seq in the <TestStand>\Tutorial directory. By
saving the sequence file now, you can specify relative paths to code
modules instead of absolute paths.

3. Choose Sequence File Types from the View ring control in the
Sequence File window. As shown in Figure 12-4, by default, the Step
Types tab should be selected.

4. Right-click and select Insert Step Type from the context menu.
Rename the step type NumericArray.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-8 ni.com

5. Insert a custom step property that is a numeric array. In the left tree
view pane expand the NumericArray and highlight the Result node.
During execution, TestStand automatically collects the values of all
properties within the Result container of a step. It stores these as
elements of the Locals.ResultList array. These values can be included
in the report, as described below. In the right list view pane right-click
on the Error property and select Insert Field»Array of»Number from
the context menu, as shown in Figure 12-4.

Figure 12-4. Insert Numeric Array Context Menu

6. In the Array Bounds dialog box of the inserted property, enable the
Initially Empty option and click the OK button. Rename the property
NumArray. When you write an array to this property, TestStand
automatically resizes the array to the size of your one-dimensional
array.

Chapter 12 Customizing the Report

© National Instruments Corporation 12-9 Getting Started with TestStand

7. Right-click on the NumArray property and select Properties from the
context menu, as shown in Figure 12-5.

Figure 12-5. Numeric Array Properties Context Menu

8. Click on the Advanced button in the NumArray Properties dialog box.

9. In the Edit Flags dialog box, enable PropFlags_IncludeInReport from
the list of available flags. This flag informs TestStand to add the value
of the property to the report.

10. Click the OK button twice to close the Edit Flags dialog box and the
NumArray Properties dialog box.

11. Right-click on the NumericArray step type and choose Properties
from the context menu. The NumericArray Properties dialog box
allows you to configure the behavior of your step type including the
default values of all step properties such as run options, looping
options, expressions, and post actions. You can create substeps that call
code modules before and after a user-defined step module. Substeps
define standard actions that occur for every instance of a step type. For
more information about step types refer to Chapter 9, Types, of the
TestStand User Manual.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-10 ni.com

12. Under the General tab, enter the following values into the
corresponding controls.

Leave the other controls set to their default values.

13. Click the OK button to close the NumericArray Properties dialog box.
You will not modify any other step type settings.

14. Save your sequence file by selecting File»Save.

You have created a step type with a property that can receive a numeric
array from a step module. By locating this property within the Result
container of the step type and enabling its PropFlags_IncludeInReport flag,
the numeric array for each instance of your step type is included in the
report.

There are other step type capabilities that you do not use in this exercise.
Typical modifications of a step type might include one or more post
substeps or a status expression that evaluates the numeric array to
determine whether the step passes or fails. The step type might also have
one or more edit substeps that allow the operator to configure the pass/fail
criteria prior to executing the test sequence. In an instance of a step type a
context menu item is created for each edit substep. You also might create
code templates to help users create code modules that return an array.

Creating a Step Module Using the LabVIEW Standard Prototype Adapter
In this exercise, you create an instance of your step type and a VI step
module that returns a numeric array. If you are not using LabVIEW, but
you do use LabWindows/CVI, you can skip this section and proceed to the
Creating a Step Module Using the C/CVI Standard Prototype Adapter or
the Creating a Step Module Using the DLL Flexible Prototype Adapter
section in this chapter.

1. Open <TestStand>\Tutorial\Sample13.seq.

2. Select MainSequence from the View ring control.

3. Click on the Adapter Selection ring on the toolbar and select the
LabVIEW Standard Prototype Adapter.

Control Name Control Value

Default Step Name Expression “Numeric Array Step”

Step Description Expression “My Description” +
“%ModuleDescription”

Chapter 12 Customizing the Report

© National Instruments Corporation 12-11 Getting Started with TestStand

4. In the Main step group of your MainSequence, right-click and select
Insert Step»NumericArray from the context menu. Notice that the
default step name and step description are the values you entered when
you created the step type.

5. Right-click on the Numeric Array Step and select Specify Module
from the context menu.

6. Enable the Sequence Context ActiveX Pointer option on the Edit
LabVIEW VI Call dialog box.

7. Click on the Create VI button and TestStand prompts you to select a
pathname for the step’s code module.

8. Find the <TestStand>\Tutorial directory. Type the name
ReturnNumArray.vi in the File name control. The VI might already
exist if someone else previously completed this session of the tutorial.

9. Click on OK to close the dialog box you used to select the VI
pathname.

10. TestStand creates and opens the ReturnNumArray.vi in LabVIEW.
Complete the diagram of the VI, as shown in Figure 12-6. A common
mistake is to type a syntax error in the lookup string
Step.Result.NumArray.

Figure 12-6. ReturnNumArray.vi Diagram

11. After you finish building the VI, save it by selecting File»Save in
LabVIEW.

12. Close the VI diagram and front panel.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-12 ni.com

13. Return to the sequence editor, and close the Edit LabVIEW VI Call
dialog box by clicking on OK.

14. Save your sequence file by selecting File»Save As.

15. Execute the sequence by selecting Execute»Single Pass. If you have
configured the Report Options so that the Report Format control is
Web Page and the Include Arrays control is Insert Graph, then the array
data should appear as shown in Figure 12-7. Vary these report option
control values to see how they affect the report.

Figure 12-7. Numeric Array Report with Graph

Chapter 12 Customizing the Report

© National Instruments Corporation 12-13 Getting Started with TestStand

Creating a Step Module Using the C/CVI Standard Prototype Adapter
In this exercise, you create an instance of your step type and a DLL code
module that returns a numeric array. If you use LabVIEW you can skip this
section and proceed to Chapter 13, Converting LabVIEW and
LabWindows/CVI Test Executive Sequences.

1. Open <TestStand>\Tutorial\Sample13.seq.

2. Select MainSequence from the View ring control.

3. Click on the Adapter Selection ring on the toolbar and select the C/CVI
Standard Prototype Adapter.

4. In the Main step group of your MainSequence, right-click and select
Insert Step»NumericArray from the context menu. Notice that the
default step name and step description are the values you entered when
you created the step type.

5. Right-click on the Numeric Array Step and select Specify Module
from the context menu. Under the Module tab of the Edit C/CVI
Module Call dialog box, the Module Type should be set to Dynamic
Link Library. Type NumericArray.dll into the Module Pathname
control.

6. Type GetNumArray into the Function Name control.

7. Enable the Pass Sequence Context option on the Edit C/CVI Module
Call dialog box.

8. Under the Source Control tab of the Edit C/CVI Module Call dialog
box, type NumericArray.c into the Pathname of Source File
Containing Function control.

9. Type NumericArray.prj into the Pathname of CVI Project to Open
control.

10. Click on the Create Code button. When you make this selection,
TestStand prompts you to select a pathname for the LabWindows/CVI
project file.

11. Find the <TestStand>\Tutorial directory and click the OK button
to close the Select a Pathname for the CVI Project File dialog box. The
file might already exist if someone else previously completed this
session of the tutorial.

12. TestStand prompts you to select a pathname for the LabWindows/CVI
source file. Find the <TestStand>\Tutorial directory and click the
OK button to close the Select a Pathname for the Source File dialog
box.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-14 ni.com

After you enter the name, TestStand does the following:

a. Launches an external instance of LabWindows/CVI

b. Creates a new project file in LabWindows/CVI

c. Creates the source file

d. Adds the source file and the TestStand support instrument drivers
to the project

e. Generates a template GetNumArray function in the source file

13. Update the GetNumArray function to return an array of doubles to the
Step.Result.NumArray property. Update the source code for the
function as follows. Changed lines appear in bold.

void __declspec(dllexport) TX_TEST

GetNumArray(tTestData *testData, tTestError

*testError)

{

int error = 0;

ErrMsg errMsg = {'\0'};

ERRORINFO errorInfo;

VARIANT tmpVariant;

double sineArray[50];

tmpVariant = CA_VariantEmpty();

errChk(SinePattern (50, 1.0, 0.0, 2, sineArray));

errChk(CA_VariantClear(&tmpVariant));

// Create a Safe Array from the 1-D array, and

// store the Safe Array in the VARIANT.

errChk(CA_VariantSet1DArray(&tmpVariant,

CAVT_DOUBLE, 50, sineArray));

// Set the value of the property the lookupString

// parameter specifies with a variant.

// Use this method to set the value

// of an entire array at once.

tsErrChk(TS_PropertySetValVariant(testData->

seqContextCVI, &errorInfo,

"Step.Result.NumArray", 0, tmpVariant));

Error:

// FREE RESOURCES

CA_VariantClear(&tmpVariant);

Chapter 12 Customizing the Report

© National Instruments Corporation 12-15 Getting Started with TestStand

// If an error occurred, set the error flag to

// cause a run-time error in TestStand.

if (error < 0)

{

testError->errorFlag = TRUE;

testError->errorCode = error;

testData->replaceStringFuncPtr(&testError->

errorMessage, errMsg);

}

return;

}

14. Compile the source code by selecting Build»Compile File to verify
that your changes are correct.

15. Save the source code after you successfully compile.

16. To build the DLL, select Build»Create Debuggable Dynamic Link
Library in the Project window.

Note If LabWindows/CVI returns a file permission error when you create the DLL, return
to the sequence editor and select File»Unload All Modules. When you make this
selection, TestStand unloads all step code modules, which includes DLLs, VIs and any
other modules the adapter loads. Return to LabWindows/CVI and rebuild the DLL.

17. After the DLL build is complete, return to the sequence editor.

18. Click on OK to close the Edit C/CVI Module Call dialog box and
return to the Main step group view.

19. Save your sequence file by selecting File»Save As.

20. Execute the sequence by selecting Execute»Single Pass. If you have
configured the Report Options so that the Report Format control is
Web Page and the Include Arrays control is Insert Graph, then the array
data should appear as shown in Figure 12-8. Vary these report option
control values to see how they affect the report.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-16 ni.com

Figure 12-8. Numeric Array Report with Graph

Creating a Step Module Using the DLL Flexible Prototype Adapter
In this exercise, you create an instance of your step type and a DLL step
module that returns a numeric array. If you use LabVIEW you can skip this
section and proceed to Chapter 13, Converting LabVIEW and
LabWindows/CVI Test Executive Sequences.

1. Open <TestStand>\Tutorial\Sample13.seq.

2. Select MainSequence from the View ring control.

Chapter 12 Customizing the Report

© National Instruments Corporation 12-17 Getting Started with TestStand

3. Click on the Adapter Selection ring on the toolbar and select the DLL
Flexible Prototype Adapter.

4. In the Main step group of your MainSequence, right-click and select
Insert Step»NumericArray from the context menu. Notice that the
default step name and step description are the values you entered when
you created the step type.

5. Right-click on the Numeric Array Step and select Specify Module
from the context menu. Under the Module tab of the Edit DLL Call
dialog box, type NumericArray.dll into the Module Pathname
control.

6. Type GetNumericArray into the Function Name control.

7. The value of the Calling Convention control should remain Standard
Call.

8. Under the Source Code tab, type NumericArray.c in the Pathname
of Source File Containing Function control.

9. Click the Create Code button.

10. If the source file does not already exist, TestStand prompts you to
choose a pathname for the source file. Browse to the
<TestStand>/Tutorial directory and click the OK button.

11. TestStand either opens the .c file with an application on your system
that is registered to open files with a *.c extension, or it prompts you
as to whether you want to launch Notepad to view the newly created .c

file. After viewing the .c file, return to the sequence editor and click
the OK button to close the Edit DLL Call dialog box.

12. Launch LabWindows/CVI by selecting Start»Programs»National
Instruments»Measurement Studio»CVI IDE.

13. If you completed the previous exercise, open the LabWindows/CVI
project NumericArray.prj.

14. If you did not complete the previous exercise, you need to create a
LabWindows/CVI project with which to build a DLL module.

a. Open a new project by selecting File»New»Project. If
LabWindows/CVI already has a project loaded,
LabWindows/CVI prompts you as to whether you want to unload
the current project. Click the Yes button. LabWindows/CVI
prompts you as to whether to transfer the current project options
to the new project. Uncheck all options and click on the OK
button.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-18 ni.com

b. Select Edit»Add Files to Project»All Files (*.*) to open the Add
Files to Project dialog box. Browse to each of the files below and
use the Add button to add them to the Selected Files control.

• <TestStand>\Tutorial\ NumericArray.c

• <TestStand>\API\CVI\tsapicvi.fp

• <TestStand>\API\CVI\tsutil.fp

After adding all files click the OK button to return to the project
window where the file names should be listed.

c. Save the project as NumericArray.prj in the
<TestStand>\Tutorial directory by selecting File»Save.

15. Open the NumericArray.c file by double clicking on the name of the
file in the project window.

16. Update the GetNumericArray function to return an array of doubles
to the Step.Result.NumArray property. Update the source code for the
function as follows. Changed lines appear in bold.

void __declspec(dllexport) __stdcall GetNumericArray

(CAObjHandle seqContextCVI, short *errorOccurred,

long *errorCode, char errorMsg[1024])

{

int error = 0;

ErrMsg errMsg = {'\0'};

ERRORINFO errorInfo;

VARIANT tmpVariant;

double sineArray[50];

tmpVariant = CA_VariantEmpty();

errChk(SinePattern (50, 1.0, 0.0, 2, sineArray));

errChk(CA_VariantClear(&tmpVariant));

// Create a Safe Array from the 1-D array,

// and stores the Safe Array in the VARIANT.

errChk(CA_VariantSet1DArray(&tmpVariant,

CAVT_DOUBLE, 50, sineArray));

// Set the value of the property the lookupString

// parameter specifies with a variant.

// Use this method to set the value

// of an entire array at once.

tsErrChk(TS_PropertySetValVariant(seqContextCVI,

Chapter 12 Customizing the Report

© National Instruments Corporation 12-19 Getting Started with TestStand

&errorInfo, "Step.Result.NumArray", 0,

tmpVariant));

Error:

// FREE RESOURCES

CA_VariantClear(&tmpVariant);

// If an error occurred, set the error flag to cause

// a run-time error in TestStand.

if (error < 0)

{

testError->errorFlag = TRUE;

*errorCode = error;

strcpy(errorMsg, errMsg);

}

return;

}

17. Compile the source code by selecting Build»Compile File to verify
that your changes are correct.

18. Save the source code after you successfully compile.

19. From the Project window select Build»Target Type»Dynamic Link
Library so that the project builds a DLL.

20. Build the DLL by selecting Build»Create Debuggable Dynamic
Link Library.

Note If LabWindows/CVI returns a file permission error when you create the DLL, return
to the sequence editor and select File»Unload All Modules. When you make this
selection, TestStand unloads all step code modules, which includes DLLs, VIs and any
other modules the adapter loads. Return to LabWindows/CVI and rebuild the DLL.

21. Return to the sequence editor and save your sequence file by selecting
File»Save.

22. You are now ready to execute the sequence that calls your DLL
function. Execute the sequence by selecting Execute»Single Pass.

23. If you have configured the Report Options so that the Report Format
control is Web Page and the Include Arrays control is Insert Graph,
then the array data should appear as shown in Figure 12-9. Vary these
report option control values to see how they affect the report.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-20 ni.com

Figure 12-9. Numeric Array Report with Graph

In this exercise, you used a sequence context pointer to pass the numeric
array from your DLL to TestStand. Using the Flexible DLL Prototype
adapter you also have the option of passing a numeric array directly using
the function parameters. For more information on how to do this, refer to
the example, <TestStand>\Examples\AccessingArrays\
PassingArrayParametersToDLL.

Chapter 12 Customizing the Report

© National Instruments Corporation 12-21 Getting Started with TestStand

Adding to a Report Using Callbacks
The default header for an HTML report appears as shown in Figure 12-3.
In this exercise, you add a logo to the header of the HTML report using a
report callback in the process model.

1. Open <TestStand>\Tutorial\Sample1.seq.

2. With the Sequence File window as the active window, select
Edit»Sequence File Callbacks to open the Sample1.seq Callbacks
dialog box.

3. Select the ModifyReportHeader callback.

4. Click on the Add button to add a callback to the sequence file.

Figure 12-10 shows the resulting dialog box.

Figure 12-10. Callbacks Dialog Box

5. Click on the Edit button to close the dialog box and edit the new
ModifyReportHeader callback sequence. Notice that the View
pull-down ring lists the ModifyReportHeader as the active
sequence, as shown in Figure 12-11.

Figure 12-11. ModifyReportHeader in Sequence View

Chapter 12 Customizing the Report

Getting Started with TestStand 12-22 ni.com

6. Click on the Locals tab and right-click in the right pane to insert a local
string variable, as shown in Figure 12-12.

Figure 12-12. Insert String Local in ModifyReportHeader

7. Rename the variable AddToHeader.

8. Double-click on AddToHeader.

9. Enter the following value in the Value field of the String Properties
dialog box:

Visit Our Web
Site

10. Click on OK to close the dialog box.

11. Click on the Main tab to display the Main step group, which is empty.

12. Right-click in the steps list and insert a Statement step by selecting
Insert Step»Statement in the context menu.

13. Rename this step Add Custom Logo.

14. Right-click on the Add Custom Logo step and select Edit Expression
from the context menu.

15. Enter the following expression:

Parameters.ReportHeader = Locals.AddToHeader +
Parameters.ReportHeader

Chapter 12 Customizing the Report

© National Instruments Corporation 12-23 Getting Started with TestStand

16. Click on OK to close the Edit Statement Step dialog box.

17. Select File»Save As and save the sequence in the
TestStand\Tutorial directory as Sample14.seq.

Figure 12-13 shows the resulting sequence file.

Figure 12-13. Completed ModifyReportHeader Sequence

18. Select Execute»Single Pass.

19. Click on Done in the Test Simulator prompt.

Chapter 12 Customizing the Report

Getting Started with TestStand 12-24 ni.com

20. After the execution completes, view the report and notice the new logo
image at the top of the UUT Report, as shown in Figure 12-14.

Figure 12-14. New HTML Header

21. Close the Execution window and the Sequence File window.

This concludes this final session in this tutorial. For more details on
customizing reports, refer to Chapter 15, Managing Reports, in the
TestStand User Manual.

© National Instruments Corporation 13-1 Getting Started with TestStand

13
Converting LabVIEW and
LabWindows/CVI Test
Executive Sequences

This chapter explains how to convert existing test sequences from
Test Executive to TestStand. TestStand provides a conversion utility
for converting LabVIEW Test Executive and LabWindows/CVI
Test Executive sequence files to TestStand sequence files.

Converting LabVIEW Test Executive Sequences
To convert a LabVIEW Test Executive 5.1 sequence file to a TestStand
sequence file, complete the following steps:

1. Select Tools»Sequence File Converters»Convert LabVIEW Test
Executive Sequence in either the TestStand Sequence Editor or any
of the execution interfaces.

2. In the file dialog box that appears, select a LabVIEW Test Executive
sequence file to convert.

3. Enter a new file name for the converted test sequence.

TestStand displays a message indicating whether the conversion was
successful.

Refer to the online help document in the TestStand\Doc directory,
Converting from the LabVIEW Test Executive to TestStand
(LVTECompatibility.hlp), for more information on converting
sequences.

Note If you are using version 4.0 or 5.0 of the LabVIEW Test Executive, you must first
convert your sequence files to version 5.1 before switching to TestStand.

Chapter 13 Converting LabVIEW and LabWindows/CVI Test Executive Sequences

Getting Started with TestStand 13-2 ni.com

Converting LabWindows/CVI Test Executive Sequences
To convert a LabWindows/CVI Test Executive 2.0.1 sequence file to a
TestStand sequence file, complete the following steps:

1. Select Tools»Sequence File Converters»Convert CVI Test
Executive Sequence in either the TestStand Sequence Editor or any
of the run-time operator interfaces.

2. In the file dialog box that appears, select a LabWindows/CVI Test
Executive sequence file to convert.

3. Enter a new file name for the converted test sequence.

TestStand displays a message indicating whether the conversion was
successful.

Refer to the online help document in the TestStand\Doc directory,
Converting from the LabWindows/CVI Test Executive to TestStand
(CVITECompatibility.hlp), for more information on converting
sequences.

Note If the version of your LabWindows/CVI Test Executive is earlier than 2.0.1,
you must first load and re-save the sequence file in the sequence editor for
LabWindows/CVI Test Executive 2.0.1.

© National Instruments Corporation A-1 Getting Started with TestStand

A
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of ni.com

NI Developer Zone
The NI Developer Zone at ni.com/zone is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ni.com

Appendix A Technical Support Resources

Getting Started with TestStand A-2 ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of ni.com. Branch office Web sites provide
up-to-date contact information, support phone numbers, e-mail addresses,
and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 Getting Started with TestStand

Glossary

Prefix Meaning Value

p- pico- 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

A

abort To stop an execution without running any of the Cleanup step groups in the
sequences on the call stack run. When you abort an execution, no report
generation occurs.

active window The window that user input affects at a given moment. The title of an active
window is highlighted.

ActiveX reference
property

A container of information that maintains a reference to an ActiveX object.
TestStand maintains the value of the property as an IDispatch or
IUnknown pointer.

ActiveX server Any executable code that makes itself available to other applications
according to the ActiveX standard. ActiveX implies a client/server
relationship in which the client requests objects from the server and asks
the server to perform actions on the objects.

Adapter A service of the TestStand engine that steps use to invoke code in another
sequence or in a code module. The adapter knows the type of the code
module, how to call it, and how to pass parameters to it.

administrator A user profile that usually contains all privileges for a test station.

Glossary

Getting Started with TestStand G-2 ni.com

Application
Development
Environment (ADE)

A programming environment such as LabVIEW, LabWindows/CVI,
or Microsoft Visual C, in which you can create test modules and run-time
execution operator interfaces.

Application
Programming Interface
(API)

A set of classes, methods, and properties that you use to control a specific
service, such as the TestStand engine.

array property A property that contains an array of single-valued properties of the same
type.

ASCII American Standard Code for Information Interchange.

B

block diagram Pictorial description or representation of a program or algorithm. In
LabVIEW, the block diagram which consists of executable icons called
nodes and wires that carry data between the nodes, is the source code for
the VI. The block diagram resides in the Diagram window of the VI.

breakpoint An interruption in the execution of a program.

built-in property A property that all steps or sequences contain. An example is the step run
mode property. TestStand normally hides these properties in the sequence
editor, although it lets you modify them through dialog boxes.

built-in step type
property

A property that is common to all steps of the same type. A built-in step type
property is either a class step type property or an instance step type
property.

button A dialog box item that, when selected, executes a command associated with
the dialog box.

C

call stack The chain of active sequences that are waiting for nested subsequences to
complete.

callback A sequence that is used to handle common tasks, such as serial number
inquiry or report logging.

checkbox A dialog box input that allows you to toggle between two possible options.

Glossary

© National Instruments Corporation G-3 Getting Started with TestStand

class Defines a list of methods and properties that you can use with respect to the
objects that you create as instances of that class. A class is like a data type
definition except that it applies to objects rather than variables.

class step type
property

A built-in step property that exists only in the step type itself. TestStand
uses these properties to define how the step type works for all step
instances. Step instances do not contain their own copies of class
properties.

client sequence file A sequence file that contains the main sequence a process model invokes to
test a UUT. Each client sequence file contains a sequence called
MainSequence. The process model defines what is constant about your
testing process, whereas the client sequence file defines the steps that are
unique to the different types of tests you run.

clipboard A temporary storage area the operating system uses to hold text that is cut,
copied, or deleted from a work area.

cluster A set of ordered, unindexed data elements in LabVIEW of any data type
including numeric, Boolean, string, array, or cluster. The elements must be
all controls or all indicators.

code module A program module, such as a Windows Dynamic Link Library (.dll) or
LabVIEW VI (.vi), that contains one or more functions that perform a
specific test or other action.

code template A source file that contains skeleton code. The skeleton code serves as a
starting point for the development of code modules for steps that use the
step type.

configuration
entry point

A sequence in the process model file that configures a feature of the process
model. Configuration entry points usually save configuration information
in a .ini file in the TestStand\cfg directory. By default, configuration
entry points appear in the Configure menu. For example, the default
process model contains the configuration entry point: Config Report
Options. The Config Report Options entry point appears as Report
Options in the Configure menu.

connector Part of a LabVIEW VI or function node that contains its input and output
terminals, through which data passes to and from the node.

container property A property that contains no values, and typically contain multiple
subproperties. Container properties are analogous to structures in C/C++
and to clusters in LabVIEW.

Glossary

Getting Started with TestStand G-4 ni.com

context menu Menus accessed by clicking on an object. Menu options pertain to that
object specifically.

control An input and output device for entering data that appears on a panel or
window.

control flow The sequential order of instructions that determines execution order.

CPU central processing unit

custom named
data type

A data type that you define and name. For example, you might create a
Transmitter data type that contains subproperties such as NumChannels
and PowerLevel.

custom property A property that you define in a step type. Each step you create with the step
type has its own copy of the custom property. TestStand uses the value that
you enter for the custom property in the step type as the initial value of the
property in each new step you create. Normally, after you create a step, you
can change the value of the property in the step.

D

developer A user profile that usually contains all privileges associated with operating,
debugging, and developing sequences and sequence files, but cannot
configure user privileges, report options, or database options.

dialog box A prompt mechanism in which you enter additional information needed to
complete a command.

DLL dynamic link library

E

Edit substep A substep that the engine calls when editing the step. You invoke the
substep with the menu item that appears in the context menu above Specify
Module. The Edit substep displays a dialog box in which the sequence
developer edits the values of custom step properties. For example, the Edit
Limits item appears in the context menu for Numeric Limit test steps, and
the Edit Pass/Fail Source item appears in the context menu for Pass/Fail test
steps.

Glossary

© National Instruments Corporation G-5 Getting Started with TestStand

engine See test executive engine

engine callback A sequence that TestStand invokes at specific points during execution.
You use engine callbacks to tell TestStand to call certain sequences before
and after the execution of individual steps, before and after interactive
executions, after loading a sequence file, and before unloading a sequence
file.

entry points A sequence in the process model file that TestStand displays as a menu
item, such as Test UUTs, Single Pass, and Report Options.

error occurred flag A Boolean flag, Step.Result.Error.Occurred, that indicates whether
a run-time error occurred in the step.

execution An object that contains all the information TestStand needs to run a
sequence, its steps, and any subsequences it calls. Typically, the TestStand
sequence editor creates a new window for each execution.

execution entry point A sequence in a process model that runs tests against a UUT. Execution
entry points call the MainSequence callback in the client sequence file.
The default process model contains two execution entry points: Test UUTs
and Single Pass. By default, execution entry points appear in the
Execute menu. Execution entry points appear in the menu only when the
active window contains a sequence file that has a MainSequence callback.

execution pointer A yellow pointer icon that shows the progress of execution by pointing to
the currently executing step in the Steps tab.

Execution window A window in the sequence editor that displays the steps an execution runs.
When execution is suspended, the execution window displays the next step
to execute and provides single-stepping options. You also can view
variables and properties in any active sequence context in the call stack.

expression A formula that calculates a new value from the values of multiple variable
or properties. In expressions, you can access all variables and properties in
the sequence context that is active when TestStand evaluates the expression.
The following is an example of an expression:
Locals.MidBandFrequency = (Step.HighFrequency +

Step.LowFrequency) / 2

Glossary

Getting Started with TestStand G-6 ni.com

F

front panel The interactive user interface of a LabVIEW VI. Modeled from the front
panel of physical instruments, it is composed of switches, slides, meters,
graphs, charts, gauges, LEDs, and other controls and indicators.

front-end callback A common sequence that the sequence editor and run-time operator
interfaces call. Front-end callbacks allow multiple applications to share
the same implementation for a specific operation. TestStand installs the
sequence file FrontEndCallback.seq, which contains the front-end
callback sequence, LoginLogout.

front-end callback
sequence file

A sequence file that contains front-end callbacks. TestStand installs the
sequence file FrontEndCallback.seq, which contains the front-end
callback sequence, LoginLogout.

G

G The graphical programming language used to develop LabVIEW
applications

global variable TestStand defines two types of globals: sequence file globals and station
globals. Sequence file globals are accessible by any sequence or step in the
sequence file. Station globals are accessible by any sequence file loaded on
the station. The values of station global variables are persistent across
different executions and even across different invocations of TestStand.

GUI See run-time operator interface.

H

hex hexadecimal

highlight The way in which input focus appears on a TestStand screen; to move the
input focus onto an item.

Glossary

© National Instruments Corporation G-7 Getting Started with TestStand

I

in-process When executable code runs in the same process space as the client, that is,
an ActiveX server in a dynamic-link library(DLL).

instance step type
property

A built-in step property that exists in each step instance. Each step that you
create with the step type has its own copy of the property. TestStand uses
the value you specify for an instance property in the step type as the initial
value of the property in each new step that you create. Normally, after you
create a step, you can change the values of its instance properties.

interactive mode When you run steps by selecting one or more steps in a sequence and
choosing the Run Selected Steps or Loop Selected Steps items in the
context menu or menu bar. The selected steps in the sequence execute,
regardless of any branching logic that the sequence contains. The selected
steps run in the order in which they appear in the sequence.

K

kill To stop a running, terminating, or aborting execution by terminating the
thread of the execution without any cleanup of memory. This can leave
TestStand in an unreliable state.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench. A program
development application based on the programming language G and used
commonly for test and measurement purposes

list box A dialog box item that displays a list of possible choices.

local variable A property of a sequence that holds a value or additional subproperties.
Only a step within the sequence can directly access the property value.

M

main sequence The sequence that initiates the tests on a UUT. The process model invokes
the main sequence as part of the overall testing process. The process model
defines what is constant about your testing process, whereas main
sequences define the steps that are unique to the different types of tests you
run.

Glossary

Getting Started with TestStand G-8 ni.com

MB megabytes of memory

menu bar Horizontal bar that contains names of main menus.

method Performs an operation or function on an object.

MFC Microsoft Foundation Class Library

MHz megahertz

model callback A mechanism which allows a sequence file to customize the default
behavior of a sequence in the process model.

model sequence file A special type of sequence file that contains process model sequences. The
sequences within the sequence file direct the high-level sequence flow of
an execution when testing a UUT.

module adapter A component that the TestStand engine uses to invoke code in another
sequence or in a code module, such as LabVIEW. When invoking code in
a code module, the adapter knows how to call it, and how to pass parameters
to it.

N

named data type A type of variable or property that you give a unique name. The data type
usually contains multiple subproperties thus creating an arbitrarily complex
data structure. All variables or properties that use the data type have the
same data structure, but the values they contain can differ.

nested Called by another step or sequence. If a sequence calls a subsequence, the
subsequence is nested in the invocation of the calling sequence.

nested interactive
execution

When you run steps interactively from an execution window for a normal
execution that is suspended at a breakpoint. You can run steps only in the
sequence and step group in which execution is suspended. The selected
steps run within the context of the normal execution.

normal execution When you start an execution in the sequence editor by selecting the Run
Sequence Name item or one of the process model entry points from the
Execute menu.

normal sequence file Any sequence file containing sequences that test UUTs.

numeric property A 64-bit floating-point value in the IEEE 754 format.

Glossary

© National Instruments Corporation G-9 Getting Started with TestStand

O

object A service that an ActiveX server makes available to clients.

operator A user profile that usually contains all privileges associated with operating
a test station, but cannot debug sequence executions, edit sequence files,
or configure user privileges, station options, report options, and database
options.

out-of-process When executable code does not run in the same process space as the client,
such as an ActiveX server in an executable.

P

pop-up menus See context menu

post actions Actions that TestStand takes depending on the pass/fail status of the step or
a custom condition the engine evaluates after executing a step. Post actions
allow you to execute callbacks or jump to other steps after executing the
step.

Post Step substep A substep that the engine invokes after calling a step module. A Post Step
substep might call a code module that compares the values the step module
stored in step properties against limit values that the Edit substep stored in
other step properties.

Pre Step substep A substep that the engine invokes before calling the step module. For
example, a Pre Step substep might call a code module that retrieves
measurement configuration parameters and stores them into step properties
for use by the step module.

preconditions A set of conditions for a step that must be true for TestStand to execute the
step during the normal flow of execution in a sequence.

process model A series of operations before and after a test executive executes the
sequence that performs the tests. Common operations include identifying
the UUT, notifying the operator of pass/fail status, generating a test report,
and logging results.

property A container of information, which stores and maintains a setting or attribute
of an object. A property can contain a single value, an array of values of the
same type, or no value at all. A property can also contain any number of
subproperties. Each property has a name.

Glossary

Getting Started with TestStand G-10 ni.com

property-array
property

A property containing a value that is an array of subproperties of a single
type. In addition to the array of subproperties, property-array properties can
contain any number of subproperties of other types.

R

RAM random-access memory

reference count Each ActiveX object keeps track of the number of things that reference it.
This allows the object to decide when to free the resources it uses.

reference property See ActiveX reference property.

resource string Text strings stored in an external file so you can alter the strings without
directly altering the application.

ROM read-only memory

root interactive
execution

When you run selected steps from a Sequence File window in an
independent execution. Root interactive executions do not invoke process
models.

run mode The mode in which you execute a step, such as normal, skip, force pass,
force fail.

run-time error An error condition that forces an execution to terminate. When the error
occurs while running a sequence, TestStand jumps to the Cleanup step
group, and the error propagates to any calling sequence up through to the
top-level sequence.

run-time operator
interface

A program that provides a graphical user interface for executing sequences
at a production station. Sometimes the sequence editor and run-time
operator interfaces are different aspects of the same program.

RTF rich text format

S

s seconds

sequence A series of steps that you specify for execution in a particular order.
Whether and when a step is executed can depend on the results of previous
steps.

Glossary

© National Instruments Corporation G-11 Getting Started with TestStand

sequence context A TestStand object that contains references to all global variables and all
local variables and step properties in active sequences. The contents of the
sequence context changes depending on the currently executing sequence
and step.

sequence editor A program that provides a graphical user interface for creating, editing,
and debugging sequences.

sequence file A file that contains the definition of one or more sequences.

Sequence File window A separate window within the sequence editor that a sequence file
appears in.

sequence globals Variables you can use to store data relevant to the entire sequence file. Each
sequence and step in the sequence file can directly access these globals.

single-valued property A property that contains a single value. TestStand has four types of these
properties: Number properties, String properties, Boolean properties, and
ActiveX reference properties.

source code template A set of source files that contain skeleton code, which serves as a starting
point for the development of code modules for steps. TestStand uses the
code template when the sequence developer clicks on the Create Code
button on the Source Code tab in the Specify Module dialog box for a step.

standard named
data type

A data type that TestStand defines and names. You can add subproperties
to the standard data types, but you cannot delete any of their built-in
subproperties. The standard named data types are Path, Error, and
CommonResults.

station callback
sequence file

A sequence file that contains the station callback sequences. Station
callbacks run before and after the engine executes each step in any normal
or interactive execution.

station globals Variables that are persistent across different executions and even across
different invocations of the sequence editor or run-time operator interfaces.
The TestStand engine maintains the value of station global variables in a
file on the run-time computer.

station model A process model that you select to use for all sequence files for a station.
The TestStand installation program establishes SequentialModel.seq
as the default station model file. You can use the Station Options dialog box
to select a different station model.

Glossary

Getting Started with TestStand G-12 ni.com

step Any action, such calling a test module to perform a specific test, that you
can include within a sequence of other actions.

step group A set of steps in a sequence. A sequence contains the following groups of
steps: Setup, Main, and Cleanup. When TestStand executes a sequence, the
steps in the Setup group execute first, the steps in the Main group execute
next, and the steps in the Cleanup group last.

step module The code module that a step calls.

step property A property of a step.

step result A container property that contains a copy of the subproperties from the
Result property of a step and additional execution information such as the
name of the step and its position in the sequence. TestStand automatically
creates a step result as each step executes and places the step result into a
result list which TestStand uses to generate its reports.

step status A string value that indicates the status of a step in an execution. Every step
in TestStand has a Result.Status property. Although TestStand imposes
no restrictions on the values to which the step or its code module can set the
status property, TestStand and the built-in step types use and recognize a
predefined set of values.

step type A component that defines a set of custom step properties and standard
behavior for each step of that type. All steps of the same type have the same
properties, but the values of the properties can differ. Step types define their
standard behaviors using substeps.

step-type-specific
dialog box

A dialog box that step types display when their Edit substep is invoked. The
dialog box lets you modify step properties that are specific to the step type.
You invoke the dialog box with the menu item that appears in the context
menu above Specify Module. For example, the Edit Limits item appears in
the context menu for Numeric Limit test steps, and the Edit Pass/Fail
Source item appears in the context menu for Pass/Fail test steps.

subsequence A sequence that another sequence calls. You specify a subsequence call as
a step in the calling sequence.

substep Actions that a step type performs for a step besides calling the step module.
You define a substep by selecting an adapter and specifying a module call.
TestStand defines three different types of substeps: Edit substep, Pre Step
substep, and Post Step substep.

Glossary

© National Instruments Corporation G-13 Getting Started with TestStand

substep module The code module that a Edit, Pre Step, or Post Step substep calls.

SVGA Super VGA

T

technician A user profile that usually contains all privileges associated with operating,
and debugging sequences and sequences files, but cannot edit sequence
files or configure user privileges, station options, report options, or
database options.

template See code template.

terminal Object or region on a LabVIEW VI node through which data passes.

terminate To stop an execution by halting the normal execution flow, and running all
the Cleanup step groups in the sequences on the call stack.

test executive engine A module or set of modules that provide an API for creating, editing,
executing, and debugging sequences. A sequence editor or run-time
execution operator interface uses the services of a test executive engine.

test module A code module that performs a test.

U

Unit Under Test (UUT) The device or component that you are testing.

user manager The component of the TestStand engine that maintains a list of users, their
user names and passwords, and their privileges. You can access the user
manager from the User Manager window in the sequence editor.

V

variables Properties that you can freely create in certain contexts. You can have
variables that are global to a sequence file or local to a particular sequence.
You can also have station global variables.

variables window A window that shows the values of all the currently active variables or
properties.

Glossary

Getting Started with TestStand G-14 ni.com

VI Virtual instrument.

VI library Special file of type .LLB that contains a collection of related VIs for a
specific use.

W

Watch window A window that shows the values of user-selectable variables and
expressions that are currently active.

window A working area that supports specific tasks related to developing and
executing programs.

wire Tool used to define data paths between source and sink terminals.

© National Instruments Corporation I-1 Getting Started with TestStand

Index

A
ActiveX, using in code modules, 10-1 to 10-22

LabVIEW test virtual instruments,
10-2 to 10-14

Array Bounds dialog box (figure), 10-3
creating sequence and virtual

instrument tests, 10-2 to 10-12
Display TestStandWaveform.vi block

diagram (figure), 10-12
Display TestStandWaveform.vi front

panel (figure), 10-11
Generate TestStandWaveform.vi block

diagram (figure), 10-10
GenerateWaveform.vi block diagram

(figure), 10-8
GenerateWaveform.vi control panel

(figure), 10-7
GenerateWaveform.vi front panel

(figure), 10-5
Insert Locals Array of Numeric

(figure), 10-3
Locals.Arraydata variable

(figure), 10-13
running the sequence, 10-12 to 10-14
setting up for example, 10-2
TestStand control palette (figure), 10-6
TestStand function palette

(figure), 10-9
LabWindows/CVI code modules,

10-14 to 10-22
Array Bounds dialog box

(figure), 10-15
creating sequence and tests,

10-14 to 10-20
Generated

GenerateTestStandWaveform source
(figure), 10-17

Insert Locals Array of Numeric
(figure), 10-15

Locals.Arraydata values (figure), 10-22
running the sequence, 10-21
setting up for example, 10-14

ActiveX Automation Adapter, 1-7
Adapter Configuration dialog box

debugging LabVIEW VIs (figure), 6-2
debugging LabWindows/CVI DLL, 6-24

architecture of TestStand (figure), 1-5
Array Bounds dialog box

using LabVIEW test virtual instruments
with ActiveX (figure), 10-3

using LabWindows/CVI code modules with
ActiveX (figure), 10-15

B
Batch process model

overview, 1-9
running sequences, 2-12 to 2-15

Batch Synchronization control, Synchronization
tab, 3-15

Breakpoint control, Run Options tab, 3-10

C
callbacks, 8-1 to 8-7

adding callbacks to a sequence (figure), 8-6
customizing report using callbacks,

12-21 to 12-24
Callbacks dialog box (figure), 12-21
completed ModifyReportHeader

sequence (figure), 12-23
inserting string local in

ModifyReportHeader (figure), 12-22

Index

Getting Started with TestStand I-2 ni.com

ModifyReportHeader callback
sequence (figure), 12-21

new HMTL header (figure), 12-24
overriding process model callback,

8-1 to 8-7
setting up for example, 8-1
Test UUTs Sequence (figure), 8-4
TestStand Sequential Model callbacks

(figure), 8-3
calling sequences dynamically and passing

parameters, 11-6 to 11-13
adding step to sequence, 11-6 to 11-10
dynamically calling a sequence

(figure), 11-10
Edit Sequence Call dialog box

(figure), 11-9
INTELProcessor.seq in Call Stack pane

(figure), 11-11
running a sequence, 11-10 to 11-13
sequence parameters in Context tab

(figure), 11-12
calling subsequences, 3-16 to 3-18
C/CVI Standard Prototype Adapter

creating step module, 12-13 to 12-16
debugging LabWindows/CVI DLL,

6-23 to 6-37
Adapter Configuration dialog

box, 6-24
C/CVI Standard Adapter

Configuration (figure), 6-25
creating C/CVI code module test,

6-24 to 6-35
debug procedure, 6-35 to 6-37
Edit CVI Module Call dialog box

Module tab (figure), 6-26
Source Code tab (figure), 6-27

Edit Numeric Limits Test dialog box
(figure), 6-33

generated results from Create Code
command (figure), 6-28

Numeric Format dialog box
(figure), 6-34

setting up for example, 6-24
stepping into GetFrequency function

(figure), 6-36
tErrorData parameter, GetFrequency

prototype function, 6-29 to 6-30
tTestData parameter, GetFrequency

prototype function, 6-29
overview, 1-7
selecting for new step, 3-2

Choose Code Template dialog box
(figure), 6-41

code modules
creating

LabVIEW DLL function,
6-16 to 6-18

LabVIEW VIs, 6-2 to 6-10
LabWindows/CVI DLL

using C/CVI Standard Prototype
Adapter, 6-24 to 6-35

using DLL Flexible Prototype
Adapter, 6-37 to 6-43

using ActiveX, 10-1 to 10-22
LabVIEW test virtual instruments,

10-2 to 10-14
LabWindows/CVI code modules,

10-14 to 10-22
Configure Message Box Step dialog box

(figure), 4-3
Context tab, Execution window, 5-8 to 5-10
conventions used in manual, iv
converting Test Executive sequences

LabVIEW Test Executive
sequences, 13-1

LabWindows/CVI Test Executive
sequences, 13-2

customer education, A-1
customizing reports. See report customization.

Index

© National Instruments Corporation I-3 Getting Started with TestStand

D
debugging

LabVIEW DLL function, 6-12 to 6-23
adding parameter expressions,

6-19 to 6-20
building DLL code module,

6-16 to 6-18
calling the DLL function,

6-18 to 6-22
Clock Frequency Function diagram

(figure), 6-15
Clock Frequency Function front

panel (figure), 6-14
creating virtual instrument code,

6-13 to 6-16
debugging procedure, 6-23
Define VI Prototype dialog box

(figure), 6-17
Edit DLL Call dialog box (figure),

6-19
Edit Numeric Limits Test dialog

box, 6-21
VI Properties dialog box (figure),

6-16
LabVIEW VIs, 6-1 to 6-12

Adapter Configuration dialog box,
6-2

adding controls to front panel, 6-7
Clock Frequency.vi block diagram

(figure), 6-8
Clock Frequency.vi front panel

(figure), 6-7
creating virtual instrument code

module, 6-2 to 6-10
debug procedure for virtual

instrument code module,
6-11 to 6-12

Edit Numeric Limits Test dialog box
(figure), 6-9

LabVIEW Adapter Configuration
dialog box (figure), 6-3

LabVIEW Step Module information
(figure), 6-4

New Clock Frequency VI
(figure), 6-5

Numeric Format dialog box
(figure), 6-10

saving the VI, 6-76-8
setting up for example, 6-2

LabWindows/CVI DLL
using C/CVI Standard Prototype

Adapter, 6-23 to 6-37
Adapter Configuration dialog

box, 6-24
C/CVI Standard Adapter

Configuration (figure), 6-25
creating C/CVI code module

test, 6-24 to 6-35
debug procedure, 6-35 to 6-37
Edit CVI Module Call—Module

tab dialog box (figure), 6-26
Edit CVI Module Call—Source

Code tab dialog box
(figure), 6-27

Edit Numeric Limits Test dialog
box (figure), 6-33

generated results from Create
Code command (figure), 6-28

Numeric Format dialog box
(figure), 6-34

setting up for example, 6-24
stepping into GetFrequency

function (figure), 6-36
tErrorData parameter,

GetFrequency prototype
function, 6-29 to 6-30

tTestData parameter,
GetFrequency prototype
function, 6-29

using DLL Flexible Prototype
Adapter, 6-37 to 6-50

building DLL, 6-44 to 6-47

Index

Getting Started with TestStand I-4 ni.com

Choose Code Template dialog
box (figure), 6-41

creating C/CVI code module,
6-37 to 6-43

debug procedure, 6-48 to 6-50
Edit DLL dialog box for

LabWindows/CVI Code
Module, 6-38

Edit Numeric Limits Test dialog
box (figure), 6-43

Numeric Format dialog box
(figure), 6-44

parameter control table of
values, 6-39 to 6-40

Prototypes Conflict dialog
box, 6-42

setting up for example, 6-37
sequences, 4-1 to 4-7

Configure Message Box Step dialog
box (figure), 4-3

paused execution, 4-3 to 4-4
run-time interface, 7-4 to 7-5
single-stepping toolbar buttons, 4-5
step mode execution, 4-1 to 4-7
Steps view for Execution window

(figure), 4-6
Define VI Prototype dialog box (figure), 6-17
development workspace of sequence

editor, 2-3
directly running sequences, 2-9 to 2-10
DLL Flexible Prototype Adapter

creating step module, 12-16 to 12-20
debugging LabVIEW DLL function,

6-12 to 6-23
adding parameter expressions,

6-19 to 6-20
building DLL code module,

6-16 to 6-18
calling the DLL function,

6-18 to 6-22
Clock Frequency Function diagram

(figure), 6-15

Clock Frequency Function front
panel (figure), 6-14

creating virtual instrument code,
6-13 to 6-16

debugging procedure, 6-23
Define VI Prototype dialog box

(figure), 6-17
Edit DLL Call dialog box (figure),

6-19
Edit Numeric Limits Test dialog

box, 6-21
VI Properties dialog box (figure),

6-16
debugging LabWindows/CVI DLL,

6-37 to 6-50
building DLL, 6-44 to 6-47
Choose Code Template dialog box

(figure), 6-41
creating C/CVI code module,

6-37 to 6-43
debug procedure, 6-48 to 6-50
Edit DLL dialog box for

LabWindows/CVI Code
Module, 6-38

Edit Numeric Limits Test dialog
box (figure), 6-43

Numeric Format dialog box
(figure), 6-44

parameter control table of values,
6-39 to 6-40

Prototypes Conflict dialog box, 6-42
setting up for example, 6-37

overview, 1-7

E
Edit C/CVI Module Call dialog box

(figure), 3-5
Edit DLL Call dialog box (figure), 6-19
Edit DLL dialog box for LabWindows/CVI

Code Module, 6-38

Index

© National Instruments Corporation I-5 Getting Started with TestStand

Edit Numeric Limits Test dialog box
debugging LabVIEW DLL function

(figure), 6-21
debugging LabVIEW VI (figure), 6-9
debugging LabWindows/CVI DLL

(figure), 6-33
Edit Sequence Call dialog box (figure), 3-17
Edit Statement Step dialog box (figure), 5-3
editing steps in a sequence, 3-1 to 3-18

adding new steps, 3-1 to 3-3
selecting module adapter, 3-2
calling subsequence from sequence,

3-16 to 3-18
changing priorities, 3-5 to 3-16
predefined step types, 3-1 to 3-2
setting up for example, 3-1
specifying test module, 3-4 to 3-5

entry points, 1-8
execution, interactive. See interactive

execution.
execution pointer, 2-10
Execution tab, Station Options dialog box

(figure), 2-8
Execution window

Context tab, 5-8 to 5-10
running sequence directly, 2-9
Watch Expression pane, 5-11 to 5-12

Expression Browser dialog box (figure), 5-4
Expressions tab, Step Properties dialog

box, 3-15 to 3-16
external report viewers, 12-6 to 12-7

H
HTBasic Adapter, 1-7

I
Ignore Tun-time Errors control, Run Options

tab, 3-10

Insert Local Context Menu command
(figure), 5-2

installation of TestStand, 1-1 to 1-3
files installed by setup program (table),

1-2 to 1-3
mass compiling VIs from older versions

(note), 1-2
minimum system requirements, 1-1
procedural steps, 1-1 to 1-2

interactive execution, 11-1 to 11-5
breakpoint during (figure), 11-3
looping on selected steps during

execution (figure), 11-4
running steps as separate execution,

11-1 to 11-3
running steps during execution,

11-4 to 11-5
selecting multiple steps in Sequence file

window (figure), 11-2

L
LabVIEW Adapter Configuration dialog box

(figure), 6-3
LabVIEW DLL function, debugging,

6-12 to 6-23
adding parameter expressions,

6-19 to 6-20
building DLL code module, 6-16 to 6-18
calling the DLL function, 6-18 to 6-22
Clock Frequency Function diagram

(figure), 6-15
Clock Frequency Function front panel

(figure), 6-14
creating virtual instrument code,

6-13 to 6-16
debugging procedure, 6-23
Define VI Prototype dialog box

(figure), 6-17
Edit DLL Call dialog box (figure), 6-19

Index

Getting Started with TestStand I-6 ni.com

Edit Numeric Limits Test dialog
box, 6-21

VI Properties dialog box (figure), 6-16
LabVIEW Standard Prototype Adapter

creating step module, 12-10 to 12-12
debugging LabVIEW VIs, 6-1 to 6-12
overview, 1-7

LabVIEW Test Executive sequences,
converting, 13-1

LabVIEW test virtual instruments, using with
ActiveX, 10-2 to 10-14

Array Bounds dialog box (figure), 10-3
creating sequence and virtual instrument

tests, 10-2 to 10-12
Display TestStandWaveform.vi block

diagram (figure), 10-12
Display TestStandWaveform.vi front

panel (figure), 10-11
Generate TestStandWaveform.vi block

diagram (figure), 10-10
GenerateWaveform.vi block diagram

(figure), 10-8
GenerateWaveform.vi control panel

(figure), 10-7
GenerateWaveform.vi front panel

(figure), 10-5
Insert Locals Array of Numeric

(figure), 10-3
Locals.Arraydata variable (figure), 10-13
running the sequence, 10-12 to 10-14
setting up for example, 10-2
TestStand control palette (figure), 10-6
TestStand function palette (figure), 10-9

LabVIEW VIs, debugging, 6-1 to 6-12
Adapter Configuration dialog box, 6-2
adding controls to front panel, 6-7
Clock Frequency.vi block diagram

(figure), 6-8
Clock Frequency.vi front panel

(figure), 6-7

creating virtual instrument code module,
6-2 to 6-10

debug procedure for virtual instrument
code module, 6-11 to 6-12

Edit Numeric Limits Test dialog box
(figure), 6-9

LabVIEW Adapter Configuration dialog
box (figure), 6-3

LabVIEW Step Module information
(figure), 6-4

New Clock Frequency VI (figure), 6-5
Numeric Format dialog box (figure), 6-10
saving the VI, 6-76-8
setting up for example, 6-2

LabWindows/CVI code modules, using with
ActiveX, 10-14 to 10-22

Array Bounds dialog box (figure), 10-15
creating sequence and tests,

10-14 to 10-20
Generated GenerateTestStandWaveform

source (figure), 10-17
Insert Locals Array of Numeric

(figure), 10-15
Locals.Arraydata values (figure), 10-22
running the sequence, 10-21
setting up for example, 10-14

LabWindows/CVI DLL, debugging
using C/CVI Standard Prototype Adapter,

6-23 to 6-37
Adapter Configuration dialog

box, 6-24
C/CVI Standard Adapter

Configuration (figure), 6-25
creating C/CVI code module test,

6-24 to 6-35
debug procedure, 6-35 to 6-37
Edit CVI Module Call dialog box

Module tab (figure), 6-26
Source Code tab (figure), 6-27

Edit Numeric Limits Test dialog box
(figure), 6-33

Index

© National Instruments Corporation I-7 Getting Started with TestStand

generated results from Create Code
command (figure), 6-28

Numeric Format dialog box
(figure), 6-34

setting up for example, 6-24
stepping into GetFrequency function

(figure), 6-36
tErrorData parameter, GetFrequency

prototype function, 6-29 to 6-30
tTestData parameter, GetFrequency

prototype function, 6-29
using DLL Flexible Prototype Adapter,

6-37 to 6-50
building DLL, 6-44 to 6-47
Choose Code Template dialog box

(figure), 6-41
creating C/CVI code module,

6-37 to 6-43
debug procedure, 6-48 to 6-50
Edit DLL dialog box for

LabWindows/CVI Code
Module, 6-38

Edit Numeric Limits Test dialog box
(figure), 6-43

Numeric Format dialog box
(figure), 6-44

parameter control table of values,
6-39 to 6-40

Prototypes Conflict dialog box, 6-42
setting up for example, 6-37

LabWindows/CVI Test Executive sequences,
converting, 13-2

learning to use TestStand, 1-3 to 1-4
Load option, Run Options tab, 3-8 to 3-9
loading sequence files, 2-4 to 2-6

Open dialog box (figure), 2-4
run-time interface, 7-1 to 7-4
sample sequence file window (figure), 2-5
View ring for selecting files (figure), 2-6
viewing tab contents, 2-6

local variables. See variables.

Lock Name or Reference Expression control,
Synchronization tab, 3-14 to 3-15

Login dialog box (figure), 2-1
Loop Options tab, Step Properties dialog

box, 3-12 to 3-13
illustration, 3-12
values for Loop Type, 3-12 to 3-13

M
menu bar of sequence editor, 2-2
Model Options dialog box (figure), 2-13
module adapters

overview, 1-7
specifying for new step, 3-2
types of adapters, 1-7 to 1-8

N
New User dialog box, 9-4
NI Developer Zone, A-1
Numeric Format dialog box

debugging LabVIEW DLL function
(figure), 6-22

debugging LabVIEW VIs (figure), 6-10
debugging LabWindows/CVI DLL

(figure), 6-34

O
Open dialog box (figure), 2-4

P
Parallel process model, 1-9
Pass/Fail Test, inserting in new step, 3-3
Post Actions tab, Step Properties dialog

box, 3-11
Precondition Evaluation in Interactive Mode

control, Run Options tab, 3-9

Index

Getting Started with TestStand I-8 ni.com

Preconditions dialog box
changing step priorities (figure),

3-7 to 3-8
creating variables (figure), 5-7

privileges, granting. See User Manager.
process models

Batch process model
overview, 1-9
running sequences, 2-12 to 2-15

changing, 1-9
default TestStand process model,

1-8 to 1-9
definition, 1-9
overriding process model callback,

8-1 to 8-7
Parallel model, 1-9
Sequential process model, 2-11 to 2-12

properties
changing step properties, 3-5 to 3-16
determined by type of step, 10-1
first-level properties of sequence context

(table), 5-10
Properties command, 3-6
Prototypes Conflict dialog box, 6-42

R
Record Results control, Run Options tab, 3-10
report customization, 12-1 to 12-24

adding new step properties to report,
12-7 to 12-20

creating step module, 12-10 to 12-20
using C/CVI Standard Prototype

Adapter, 12-13 to 12-16
using DLL Flexible Prototype

Adapter, 12-16 to 12-20
using LabVIEW Standard

Prototype Adapter,
12-10 to 12-12

creating step type, 12-7 to 12-10
Insert Numeric Array Context

menu (figure), 12-8
Numeric Array Properties

Context menu (figure), 12-9
setting up for example, 12-7

callbacks for adding items to report,
12-21 to 12-24

configuring test report options,
12-1 to 12-5

test report in HTML format
(figure), 12-5

test report in text format
(figure), 12-4

UUT report setting (figure), 12-2
external report viewers, 12-6 to 12-7
setting up for example, 12-1

requirements for installing TestStand, 1-1
Run Mode control, Run Options tab, 3-9
Run Options tab, Step Properties dialog

box, 3-8 to 3-9
Breakpoint control, 3-10
Ignore Tun-time Errors control, 3-10
illustration, 3-8
Load option, 3-8 to 3-9
Precondition Evaluation in Interactive

Mode control, 3-9
Record Results control, 3-10
Run Mode control, 3-9
Step Failure Causes Sequence Failure

control, 3-10
TestStand Window Activation

control, 3-10
Unload option, 3-9

running sequences, 2-7 to 2-15
directly, 2-9 to 2-10
multiple executions, in run-time

interface, 7-6
run-time interface, 7-4 to 7-5
setting up tracing options, 2-7 to 2-8

Index

© National Instruments Corporation I-9 Getting Started with TestStand

using Batch process model, 2-12 to 2-15
using Sequential process model,

2-11 to 2-12
run-time operator interfaces, 7-1 to 7-6

loading sequences, 7-1 to 7-4
LabWindows/CVI operator interface

(figure), 7-2
Open Sequence (figure), 7-3

overview, 1-6
running and debugging sequences,

7-4 to 7-5
running multiple executions, 7-6

S
Sequence Adapter, 1-7
sequence context

definition, 10-1
first-level properties (table), 5-10

sequence editor
development workspace, 2-3
main window (figure), 2-2
menu bar, 2-2
overview, 1-6
status bar, 2-3 to 2-4
toolbar, 2-3

sequence file global variables, 5-1
sequences

calling dynamically and passing
parameters, 11-6 to 11-13

adding step to sequence,
11-6 to 11-10

dynamically calling a sequence
(figure), 11-10

Edit Sequence Call dialog box
(figure), 11-9

INTELProcessor.seq in Call Stack
pane (figure), 11-11

running a sequence, 11-10 to 11-13
sequence parameters in Context tab

(figure), 11-12

debugging, 4-1 to 4-7
Configure Message Box Step dialog

box (figure), 4-3
paused execution, 4-3 to 4-4
run-time interface, 7-4 to 7-5
single-stepping toolbar buttons, 4-5
step mode execution, 4-1 to 4-7
Steps view for Execution window

(figure), 4-6
editing steps in a sequence, 3-1 to 3-18

adding new steps, 3-1 to 3-3
selecting module adapter, 3-2

calling subsequence from sequence,
3-16 to 3-18

changing priorities, 3-5 to 3-16
predefined step types, 3-1 to 3-2
setting up for example, 3-1
specifying test module, 3-4 to 3-5

loading sequence files, 2-4 to 2-6
Open dialog box (figure), 2-4
run-time interface, 7-1 to 7-4
sample sequence file window

(figure), 2-5
View ring for selecting files

(figure), 2-6
viewing tab contents, 2-6

overview, 2-7
running, 2-7 to 2-15

directly, 2-9 to 2-10
multiple executions, in run-time

interface, 7-6
run-time interface, 7-4 to 7-5
setting up tracing options, 2-7 to 2-8
using Batch process model,

2-12 to 2-15
using Sequential process model,

2-11 to 2-12
Sequential process model for running

sequences, 2-11 to 2-12
Specify Module dialog box, 3-4 to 3-5
starting TestStand, 2-1 to 2-2

Index

Getting Started with TestStand I-10 ni.com

station global variables, 5-1, 10-1
status bar of sequence editor, 2-3 to 2-4
Step Failure Causes Sequence Failure control
Run Options tab, 3-10
Step Into command, Debug menu, 4-4
step mode execution, 4-1 to 4-7

Configure Message Box Step dialog box
(figure), 4-3

paused execution, 4-3 to 4-4
single-stepping toolbar buttons, 4-5
Steps view for Execution window

(figure), 4-6
Step Out command, Debug menu, 4-4
Step Over command, Debug menu, 4-4
step properties

adding to reports. See report
customization.

changing, 3-5 to 3-16
Step Properties dialog box, 3-5 to 3-16

Expressions tab, 3-15 to 3-16
illustration, 3-6
Loop Options tab, 3-12 to 3-13
Post Actions tab, 3-11
Run Options tab, 3-8 to 3-9
Synchronization tab, 3-14 to 3-15

step type, creating, 12-7 to 12-10
steps, 3-1 to 3-18

adding new steps, 3-1 to 3-3
selecting module adapter, 3-2

calling subsequence from sequence,
3-16 to 3-18

changing properties, 3-5 to 3-16
predefined step types, 3-1 to 3-2
setting up for example, 3-1
specifying test module, 3-4 to 3-5

subsequences, calling, 3-16 to 3-18
Synchronization tab, Step Properties dialog

box, 3-14 to 3-15
Batch Synchronization control, 3-15
illustration, 3-14

Lock Name or Reference Expression
control, 3-14 to 3-15

Use Lock to allow Only One Thread to
Execute the Step control, 3-14

system integration, by National Instruments,
A-1

T
technical support resources, A-1 to A-2
Test Executive Engine, 1-7
Test Executive sequences, converting

LabVIEW Test Executive
sequences, 13-1

LabWindows/CVI Test Executive
sequences, 13-2

test module, specifying, 3-4 to 3-5
Test Simulator dialog box (figure), 2-10
TestStand

installation, 1-1 to 1-3
learning to use, 1-3 to 1-4
major software components, 1-5 to 1-9

module adapters, 1-7 to 1-8
process models, 1-8 to 1-9
run-time operator interfaces, 1-6
sequence editor, 1-6
Test Executive Engine, 1-7

overview, 1-4
starting, 2-1 to 2-2
system architecture of (figure), 1-5

TestStand Window Activation control, 3-10
toolbar of sequence editor, 2-3
tracing options, setting up, 2-7 to 2-8

U
Unload option, Run Options tab, 3-9
Use Lock to allow Only One Thread to

Execute the Step control, Synchronization
tab, 3-14

User Manager, 9-1 to 9-6

Index

© National Instruments Corporation I-11 Getting Started with TestStand

adding new users, 9-3 to 9-6
creating new profile, 9-4 to 9-6
granting privileges, 9-2
New User dialog box, 9-4
setting up for example, 9-1
User Manager window (figure), 9-3
viewing current users, 9-1 to 9-2

V
variables

creating and using local variables,
5-1 to 5-8

Edit Statement Step dialog box
(figure), 5-3

Expression Browser dialog box
(figure), 5-4

Insert Local Context Menu command
(figure), 5-2

Preconditions for the Loop End Step
dialog box, 5-7

setting up for example, 5-4
local variables, 5-1
purpose and use, 10-1

sequence file global variables, 5-1
station global variables, 5-1, 10-1
using Context tab, 5-8 to 5-10
using Watch Expression pane,

5-11 to 5-12
VI Properties dialog box (figure), 6-16
VIs (virtual instruments)

creating virtual instrument code module
debugging LabVIEW DLL function,

6-13 to 6-16
debugging LabVIEW VIs,

6-2 to 6-10
mass compiling VIs from older versions

(note), 1-2
using ActiveX in LabVIEW test virtual

instruments, 10-2 to 10-14

W
Watch Expression pane, Execution window,

5-11 to 5-12
Web support from National Instruments, A-1
Worldwide technical support, A-2

	Getting Started with�TestStand
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction to TestStand
	Installing TestStand
	Minimum System Requirements
	Installing TestStand
	What the Setup Programs Install

	Learning TestStand
	TestStand System Overview
	Major Software Components of TestStand
	TestStand Sequence Editor
	TestStand Run-Time Operator Interfaces
	TestStand Test Executive Engine
	Module Adapters
	Process Models

	Chapter 2 Loading and Running Sequences
	Starting TestStand
	Introduction to the Sequence Editor
	Menu Bar
	Toolbar

	Development Workspace
	Status Bar

	Loading a Sequence File
	About Sequences

	Running a Sequence
	Setting Up Tracing Options
	Running a Sequence Directly
	Running a Sequence Using the Sequential Process Model
	Running a Sequence Using the Batch Process Model

	Chapter 3 Editing Steps in a Sequence
	Setting Up the Example
	Adding a New Step
	Specifying the Test Module
	Changing Step Properties
	Calling a Subsequence from a Sequence

	Chapter 4 Debugging Sequences
	Setting Up the Example
	Step Mode Execution

	Chapter 5 Using Variables and Properties
	Setting Up the Example
	Using TestStand Variables
	Using the Context Tab
	Using the Watch Expression Pane

	Chapter 6 Creating and Debugging Tests
	Debugging a LabVIEW VI Using the LabVIEW Standard Prototype Adapter
	Setting Up the Example
	Creating a Virtual Instrument Code Module
	Debugging a Virtual Instrument Code Module

	Debugging a LabVIEW DLL Function Using the DLL Flexible Prototype Adapter
	Creating the Virtual Instrument Code
	Building a LabVIEW DLL Code Module
	Calling the LabVIEW DLL function
	Debugging the DLL Function

	Debugging a LabWindows/CVI DLL Using the C/CVI Standard Prototype�Adapter
	Setting Up the Example
	Creating a C/CVI Code Module Test
	Debugging a CVI Code Module

	Debugging a LabWindows/CVI DLL Using the DLL Flexible Prototype Adapter
	Setting Up the Example
	Creating the LabWindows/CVI Code Module
	Building a LabWindows/CVI DLL
	Debugging the DLL Function

	Chapter 7 Using Run-Time Operator Interfaces
	Loading Sequences
	Running and Debugging Sequences
	Running Multiple Executions

	Chapter 8 Using Callbacks
	Setting Up the Example
	Overriding a Process Model Callback

	Chapter 9 Adding Users and Setting Privileges
	Setting Up the Example
	Using the User Manager

	Chapter 10 Using ActiveX in Code Modules
	Using ActiveX in LabVIEW Test Virtual Instruments
	Setting Up the Example
	Creating the Sequence and Virtual Instrument Tests
	Running the Sequence

	Using ActiveX in LabWindows/CVI Code Modules
	Setting Up the Example
	Creating the Sequence and Tests
	Running the Sequence

	Chapter 11 Additional Development Features
	Setting Up the Example
	Interactive Execution
	Running Selected Steps as a Separate Execution
	Running Selected Steps During an Execution

	Calling Sequences Dynamically and Passing Parameters
	Adding a Step to Sequence
	Running a Sequence

	Chapter 12 Customizing the Report
	Setting Up the Example
	Configuring Test Report Options
	Using External Report Viewers
	Adding New Step Properties to a Report
	Setting Up the Example
	Creating a Step Type
	Creating a Step Module Using the LabVIEW Standard Prototype Adapter
	Creating a Step Module Using the C/CVI Standard Prototype Adapter
	Creating a Step Module Using the DLL Flexible Prototype Adapter

	Adding to a Report Using Callbacks

	Chapter 13 Converting LabVIEW and LabWindows/CVI Test Executive Sequences
	Converting LabVIEW Test Executive Sequences
	Converting LabWindows/CVI Test Executive Sequences

	Appendix A Technical Support Resources
	Glossary
	A
	B-C
	D-E
	F-H
	I-M
	N
	O-P
	R-S
	T-V
	W

	Index
	A-C
	D
	E
	H-L
	M-P
	R
	S
	T-U
	V-W

	Figures
	Figure 1-1. TestStand System Architecture
	Figure 2-1. Login Dialog Box
	Figure 2-2. Sequence Editor Main Window
	Figure 2-3. Sequence Editor Toolbar
	Figure 2-4. Sequence Editor Status Bar
	Figure 2-5. Open Dialog Box
	Figure 2-6. Sample1.seq Sequence File Window
	Figure 2-7. Sequence File View Ring
	Figure 2-8. Execution Tab on the Station Options Dialog Box
	Figure 2-9. Sample1.seq Execution Window
	Figure 2-10. Test Simulator Dialog Box
	Figure 2-11. Report Generating Status Bar
	Figure 2-12. Model Options Dialog Box
	Figure 3-1. Selecting the Module Adapter
	Figure 3-2. Inserting a New Step
	Figure 3-3. Specify Module Dialog Box
	Figure 3-4. Step Properties Dialog Box
	Figure 3-5. Preconditions Dialog Box
	Figure 3-6. Run Options Tab
	Figure 3-7. Post Actions Tab
	Figure 3-8. Loop Options Tab
	Figure 3-9. Synchronization Tab
	Figure 3-10. Expressions Tab
	Figure 3-11. Edit Sequence Call Dialog Box
	Figure 4-1. Configure Message Box Step Dialog Box
	Figure 4-2. Paused Execution of Sample3.seq
	Figure 4-3. Single-Stepping Toolbar Buttons
	Figure 4-4. Steps View while Suspended in Subsequence
	Figure 5-1. Insert Local Context Menu Command
	Figure 5-2. Edit Statement Step Dialog Box
	Figure 5-3. Expression Browser Dialog Box
	Figure 5-4. Preconditions for the Loop End Step
	Figure 5-5. Context Tab
	Figure 5-6. Updated Watch Window Pane
	Figure 6-1. Adapter Configuration
	Figure 6-2. LabVIEW Adapter Configuration
	Figure 6-3. LabVIEW Step Module Information
	Figure 6-4. New Clock Frequency VI in LabVIEW
	Figure 6-5. Completed Clock Frequency.vi Front Panel
	Figure 6-6. Clock Frequency.vi Block Diagram
	Figure 6-7. Edit Numeric Limits Test Dialog Box
	Figure 6-8. Numeric Format Dialog Box
	Figure 6-9. LabVIEW Highlight Execution Mode
	Figure 6-10. Clock Frequency Function Front Panel
	Figure 6-11. Clock Frequency Function Diagram
	Figure 6-12. VI Properties Dialog Box
	Figure 6-13. Define VI Prototype Dialog Box
	Figure 6-14. Edit DLL Call Dialog Box
	Figure 6-15. Edit Numeric Limits Test Dialog Box
	Figure 6-16. Numeric Format Dialog Box
	Figure 6-17. Adapter Configuration
	Figure 6-18. C/CVI Standard Adapter Configuration
	Figure 6-19. Edit CVI Module Call—Module Tab
	Figure 6-20. Edit CVI Module Call—Source Code Tab
	Figure 6-21. Generated Result from Create Code Command
	Figure 6-22. Edit Numeric Limits Test Dialog Box
	Figure 6-23. Numeric Format Dialog Box
	Figure 6-24. Stepping into the GetFrequency Function
	Figure 6-25. Edit DLL Dialog Box for a LabWindows/CVI Code Module
	Figure 6-26. Choose Code Template Dialog Box
	Figure 6-27. Prototypes Conflict Dialog Box
	Figure 6-28. Edit Numeric Limits Test Dialog Box
	Figure 6-29. Numeric Format Dialog Box
	Figure 6-30. Debugging the ClockFrequency function
	Figure 7-1. LabWindows/CVI Operator Interface
	Figure 7-2. Open Sequence in Operator Interface
	Figure 7-3. Paused Execution in Operator Interface
	Figure 8-1. TestStand Sequential Model Callbacks
	Figure 8-2. Test UUTs Sequence
	Figure 8-3. Adding Callbacks to a Sequence
	Figure 9-1. User Manager Window
	Figure 9-2. New User Dialog Box
	Figure 9-3. Configure Privileges in New Profile
	Figure 10-1. Insert Locals Array of Numeric
	Figure 10-2. Array Bounds Dialog Box
	Figure 10-3. GenerateWaveform.vi Front Panel
	Figure 10-4. TestStand Control Palette
	Figure 10-5. GenerateTestStandWaveform.vi Control Panel
	Figure 10-6. GenerateWaveform.vi Block Diagram
	Figure 10-7. TestStand Function Palette
	Figure 10-8. GenerateTestStandWaveform.vi Block Diagram
	Figure 10-9. DisplayTestStandWaveform.vi Front Panel
	Figure 10-10. DisplayTestStandWaveform.vi Block Diagram
	Figure 10-11. Locals.Arraydata
	Figure 10-12. Insert Locals Array of Numeric
	Figure 10-13. Array Bounds Dialog Box
	Figure 10-14. Generated GenerateTestStandWaveform Source
	Figure 10-15. Locals.Arraydata Values
	Figure 11-1. Selecting Multiple Steps in a Sequence File Window
	Figure 11-2. Breakpoint During Interactive Execution
	Figure 11-3. Loop on Selected Steps During Execution
	Figure 11-4. Dynamically Calling with an Expression
	Figure 11-5. Dynamically Calling a Sequence
	Figure 11-6. INTELProcessor.seq in the Call Stack Pane
	Figure 11-7. Sequence Parameters in the Context Tab
	Figure 12-1. UUT Report Setting
	Figure 12-2. Test Report in Text Format
	Figure 12-3. Test Report in HTML Format
	Figure 12-4. Insert Numeric Array Context Menu
	Figure 12-5. Numeric Array Properties Context Menu
	Figure 12-6. ReturnNumArray.vi Diagram
	Figure 12-7. Numeric Array Report with Graph
	Figure 12-8. Numeric Array Report with Graph
	Figure 12-9. Numeric Array Report with Graph
	Figure 12-10. Callbacks Dialog Box
	Figure 12-11. ModifyReportHeader in Sequence View
	Figure 12-12. Insert String Local in ModifyReportHeader
	Figure 12-13. Completed ModifyReportHeader Sequence
	Figure 12-14. New HTML Header

	Tables
	Table 1-1. TestStand Subdirectories
	Table 5-1. First-Level Properties of the Sequence Context
	Table 6-1. Parameter Control Table of Values

